Issues

 / 

2017

 / 

October

  

Methodological notes


High-pressure behavior of the Fe—S system and composition of the Earth's inner core

 a,  b,  c, b, a
a Lomonosov Moscow State University, Vorobevy Gory, Moscow, 119991, Russian Federation
b Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
c Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russian Federation

Using evolutionary crystal structure prediction algorithm USPEX, we identify the compositions and crystal structures of stable compounds in the Fe—S system at pressures in the range 100—400 GPa. We find that at pressures of the Earth's solid inner core (330—364 GPa) two compounds are stable — Fe2S and FeS. In equilibrium with iron, only Fe2S can exist in the inner core. Using the equation of state of Fe2S, we find that in order to reproduce the density of the inner core by adding sulfur alone, 10.6—13.7 mol.% (6.4—8.4 wt.%) sulfur is needed. Analogous calculation for silicon (where the only stable compound at inner core pressures is FeSi) reproduces the density of the inner core with 9.0—11.8 mol.% (4.8—6.3 wt.%) silicon. In both cases, a virtually identical mean atomic mass $\bar M$ in the range 52.6—53.3 results for in the inner core, which is much higher than $\bar M=49.3$ determined for the inner core from Birch's law. In the case of oxygen (noting the equilibrium coexistence of suboxide Fe2O with iron under nuclear conditions), the inner core density can be explained by the hydrogen content of 13.2—17. 2 mol.% (4.2—5.6 mass%), which corresponds to $\bar M$ between 49.0 and 50.6. Combining our results and previous works, we arrive at four preferred compositional models of the inner core (in atomic %): (i) 86% (Fe+Ni)+14% C; (ii) 84% (Fe+Ni)+16% O; (iii) 84% (Fe+Ni)+7% S+9% H; (iv) 85% (Fe+Ni)+6% Si+9% H.

Fulltext pdf (632 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.03.038079
Keywords: crystal structure prediction, ab initio calculations, evolutionary algorithms, mineral physics
PACS: 61.50.Ah, 61.50.Ks, 61.50.Nw, 61.66.Fn, 64.30.−t, 91.60.Fe (all)
DOI: 10.3367/UFNe.2017.03.038079
URL: https://ufn.ru/en/articles/2017/10/d/
000419110600004
2-s2.0-85040925889
Citation: Bazhanova Z G, Roizen V V, Oganov A R "High-pressure behavior of the Fe—S system and composition of the Earth's inner core" Phys. Usp. 60 1025–1032 (2017)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 6th, February 2017, revised: 21st, February 2017, 2nd, March 2017

Оригинал: Бажанова З Г, Ройзен В В, Оганов А Р «Поведение системы Fe—S при высоких давлениях и состав ядра Земли» УФН 187 1105–1113 (2017); DOI: 10.3367/UFNr.2017.03.038079

References (72) ↓ Cited by (25) Similar articles (19)

  1. Birch F J. Geophys. Res. 69 4377 (1964)
  2. Birch F J. Geophys. Res. 57 227 (1952)
  3. Poirier J-P Introduction To The Physics Of The Earth’s Interior 2nd ed. (Cambridge: Cambridge Univ. Press, 2000)
  4. Bazhanova Z G, Oganov A R, Dzhanola O Usp. Fiz. Nauk 182 521 (2012); Bazhanova Z G, Oganov A R, Gianola O Phys. Usp. 55 489 (2012)
  5. Li J et al. Earth Planet. Sci. Lett. 193 509 (2001)
  6. Chen B et al. Proc. Natl. Acad. Sci. USA 104 9162 (2007)
  7. Alfè D, Gillan M J, Price G D Earth Planet. Sci. Lett. 195 91 (2002)
  8. Badro J, Cĉt;eacute; A S, Brodholt J P Proc. Natl. Acad. Sci. USA 111 7542 (2014)
  9. Hirose K, Labrosse S, Hernlund J Annu. Rev. Earth Planet. Sci. 41 657 (2013)
  10. Saxena S, Eriksson G Calphad 51 202 (2015)
  11. Akahama Y, Kobayashi M, Kawamura H Phys. Rev. B 48 6862 (1993)
  12. Luo H, Greene R G, Ruoff A L Phys. Rev. Lett. 71 2943 (1993)
  13. Degtyareva O et al. High Pressure Res. 25 17 (2005)
  14. Zakharov O, Cohen M L Phys. Rev. B 52 12572 (1995)
  15. Rudin S P, Liu A Y Phys. Rev. Lett. 83 3049 (1999)
  16. Mao H-K, Bassett W A, Takahashi T J. Appl. Phys. 38 272 (1967)
  17. Vočadlo L et al. Phys. Earth Planet. Inter. 117 123 (2000)
  18. Steinle-Neumann G, Stixrude L, Cohen R E Proc. Natl. Acad. Sci. USA 101 33 (2004)
  19. Saxena S K, Dubrovinsky L S, H&lauml;ggkvist P Geophys. Res. Lett. 23 2441 (1996)
  20. Andrault et al. Science 278 831 (1997)
  21. Belonoshko A B, Ahuja R, Johansson B Nature 424 1032 (2003)
  22. Belonoshko A B et al. Phys. Rev. B 74 214102 (2006)
  23. Gorbatov O I et al. J. Nucl. Mater. 419 248 (2011)
  24. Stixrude L, Cohen R E Geophys. Res. Lett. 22 125 (1995)
  25. Vočadlo L et al. Nature 424 536 (2003)
  26. Dubrovinsky L et al. Science 316 1880 (2007)
  27. Kuwayama Y et al. Earth Planet. Sci. Lett. 273 379 (2008)
  28. Tateno S et al. Science 330 359 (2010)
  29. Côté A S, Vočadlo L, Brodholt J P Earth Planet. Sci. Lett. 345-348 126 (2012)
  30. Ono S et al. Earth Planet. Sci. Lett. 272 481 (2008)
  31. Sata N et al. Am. Mineral. 93 492 (2008)
  32. Oganov A R, Glass C W J. Chem. Phys. 124 244704 (2006)
  33. Oganov A R, Lyakhov A O, Valle M Acc. Chem. Res. 44 227 (2011)
  34. Lyakhov A O et al. Comput. Phys. Commun. 184 1172 (2013)
  35. Hohenberg P, Kohn W Phys. Rev. 136 B864 (1964)
  36. Kohn W, Sham L J Phys. Rev. 140 A1133 (1965)
  37. Perdew J P, Burke K, Ernzerhof M Phys. Rev. Lett. 77 3865 (1996)
  38. Dewaele A et al. Phys. Rev. Lett. 97 215504 (2006)
  39. Dubrovinsky L S et al. Phys. Rev. Lett. 84 1720 (2000)
  40. Mao H K et al. J. Geophys. Res. Solid Earth 95 21737 (1990)
  41. Jephcoat A P, Mao H K, Bell P M J. Geophys. Res. Solid Earth 91 4677 (1986)
  42. Ono S, Kikegawa T Am. Mineral. 91 1941 (2006)
  43. Blöchl P E Phys. Rev. B 50 17953 (1994)
  44. Kresse G, Joubert D Phys. Rev. B 59 1758 (1999)
  45. Kresse G, Furthmüller G J. Phys. Rev. B 54 11169 (1996)
  46. Methfessel M, Paxton A T Phys. Rev. B 40 3616 (1989)
  47. Blöchl P E , Jepsen O, Andersen O K Phys. Rev. B 49 16223 (1994)
  48. Dudarev S L et al. Phys. Rev. B 57 1505 (1998)
  49. Togo A, Oba F, Tanaka I Phys. Rev. B 78 134106 (2008)
  50. Togo A, Tanaka I Scripta Mater. 108 1 (2015)
  51. Birch F Phys. Rev. 71 809 (1947)
  52. Parthasarathy G Geochim. Cosmochim. Acta A 68 (Suppl. 11) 93 (2004)
  53. Gudelli V K et al. J. Phys. Chem. C 117 21120 (2013)
  54. Lennie A R et al. Mineral. Mag. 59 677 (1995)
  55. Grimme S J. Comput. Chem. 27 1787 (2006)
  56. Tkatchenko A, Scheffler M Phys. Rev. Lett. 102 073005 (2009)
  57. Dion M et al. Phys. Rev. Lett. 92 246401 (2004)
  58. Román-Pérez G, Soler J M Phys. Rev. Lett. 103 096102 (2009)
  59. Klimeš J, Bowler D R, Michaelides A J. Phys. Condens. Matter 22 022201 (2010)
  60. Klimeš J, Bowler D R, Michaelides A Phys. Rev. B 83 195131 (2011)
  61. Thonhauser T et al. Phys. Rev. B 76 125112 (2007)
  62. Zhang F, Oganov A R Geophys. Res. Lett. 37 L02305 (2010)
  63. Weerasinghe G L, Pickard C J, Needs R J J. Phys. Condens. Matter 27 455501 (2015)
  64. Dziewonski A M, Anderson D L Phys. Earth Planet. Inter. 25 297 (1981)
  65. Alfè D et al. Philos. Trans. R. Soc. Lond. A 360 1227 (2002)
  66. Huang H et al. Nature 479 513 (2011)
  67. Narygina O et al. Earth Planet. Sci. Lett. 307 409 (2011)
  68. Litasov K D, Shatskiy A F, Ohtani E Geochem. Int. 54 914 (2016)
  69. Hirose K et al. Nature 543 99 (2017)
  70. Prescher C et al. Nature Geosci. 8 220 (2015)
  71. Chen B et al. Geophys. Res. Lett. 39 L18301 (2012)
  72. Chen B et al. Proc. Natl. Acad. Sci. USA 111 17755 (2014)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions