Issues

 / 

2016

 / 

July

  

Methodological notes


Killing vector fields and a homogeneous isotropic universe


V.A. Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991, Russian Federation

Some basic theorems on Killing vector fields are reviewed. In particular, the topic of a constant curvature space is examined. A detailed proof is given for a theorem describing the most general form of the metric of a homogeneous isotropic space-time. Although this theorem can be considered commonly known, its complete proof is difficult to find in the literature. An example metric is presented which, while all its spatial cross sections correspond to constant curvature spaces, still is not homogeneous and isotropic as a whole. An equivalent definition of a homogeneous isotropic space-time in terms of embedded manifolds is also given.

Fulltext pdf (199 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2016.05.037808
Keywords: Killing vector field, homogeneous universe, isotropic universe, Friedmann metric
PACS: 04.20.−q
DOI: 10.3367/UFNe.2016.05.037808
URL: https://ufn.ru/en/articles/2016/7/d/
000386357600004
2-s2.0-84991721633
2016PhyU...59..689K
Citation: Katanaev M O "Killing vector fields and a homogeneous isotropic universe" Phys. Usp. 59 689–700 (2016)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 4th, December 2015, 16th, May 2016

Оригинал: Катанаев М О «Векторные поля Киллинга и однородная и изотропная вселенная» УФН 186 763–775 (2016); DOI: 10.3367/UFNr.2016.05.037808

References (23) Cited by (20) Similar articles (20) ↓

  1. L.B. Okun’ “The concept of mass (mass, energy, relativity)Sov. Phys. Usp. 32 629–638 (1989)
  2. B.M. Bolotovskii, G.B. Malykin “Visible shape of moving bodiesPhys. Usp. 62 1012–1030 (2019)
  3. P.B. Ivanov “On relativistic motion of a pair of particles having opposite signs of massesPhys. Usp. 55 1232–1238 (2012)
  4. L.B. Okun, K.G. Selivanov, V.L. Telegdi “Gravitation, photons, clocksPhys. Usp. 42 1045–1050 (1999)
  5. A.A. Logunov, M.A. Mestvirishvili, Yu.V. Chugreev “On incorrect formulations of the equivalence principlePhys. Usp. 39 73–79 (1996)
  6. V.L. Ginzburg, Yu.N. Eroshenko “Once again about the equivalence principlePhys. Usp. 38 195–201 (1995)
  7. E.G. Bessonov “Another route to the Lorentz transformationsPhys. Usp. 59 475–479 (2016)
  8. R.I. Khrapko “Gravitational mass of the photonsPhys. Usp. 58 1115–1117 (2015)
  9. I.D. Novikov “Antigravitation in the UniversePhys. Usp. 61 692–696 (2018)
  10. A.A. Shatskiy, I.D. Novikov, N.S. Kardashev “The Kepler problem and collisions of negative massesPhys. Usp. 54 381–385 (2011)
  11. A.A. Shatskii “The sky of a universe as seen through a wormholePhys. Usp. 52 811–814 (2009)
  12. A.A. Shatskii, I.D. Novikov, N.S. Kardashev “A dynamic model of the wormhole and the Multiverse modelPhys. Usp. 51 457–464 (2008)
  13. V.L. Ginzburg, Yu.N. Eroshenko “Comments on the paper by A A Logunov et al.Phys. Usp. 39 81–82 (1996)
  14. A.A. Logunov “The theory of the classical gravitational fieldPhys. Usp. 38 179–193 (1995)
  15. S.I. Chermyanin “Predictions of the general theory of relativity are free from ambiguitySov. Phys. Usp. 33 (5) 385–387 (1990)
  16. A.A. Logunov “The relativistic theory of gravitationSov. Phys. Usp. 33 (8) 663–668 (1990)
  17. L.P. Grishchuk “The general theory of relativity: familiar and unfamiliarSov. Phys. Usp. 33 (8) 669–676 (1990)
  18. A.I. Akhiezer, R.V. Polovin “Why IT IS impossible to introduce hidden parameters into quantum mechanicsSov. Phys. Usp. 15 500–512 (1973)
  19. V.B. Priezzhev “The dimer problem and the Kirchhoff theoremSov. Phys. Usp. 28 1125–1135 (1985)
  20. V.D. Shafranov “Virial theorem for a system of charged particlesSov. Phys. Usp. 22 368–370 (1979)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions