Issues

 / 

2015

 / 

August

  

Physics of our days


Femtosecond lasers for astrophysics

 a, b
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b Prokhorov General Physics Institute of the Russian Academy of Sciences, Dianov Fiber Optics Research Center, ul. Vavilova 38, Moscow, 119991, Russian Federation

Passively mode-locked continuous-wave (cw) lasers offer the unique feature of generating a strictly periodic train of absolutely identical femtosecond pulses, their emission spectrum representing a comb of equidistant narrow spectral lines separated by the interval determined by the pulse repetition rate. Thus, a cw femtosecond laser is a source of a regular optical frequency comb (OFC), which can be compared to a cesium frequency standard (second standard) for the precise measurement of optical frequencies for the development of extremely precise atomic clocks, precision spectroscopy and metrology. One of the main applications of OFCs based on cw femtosecond lasers is precision spectrometric measurements of Doppler shifts in stellar spectra appearing due to the radial motion of stars with respect to the observer. To provide the high measurement accuracy required for the search for and study of exoplanets, a precision calibrator for an astronomical spectrometer is required. Such a calibrator can be based on a femtosecond laser OFC. Laser systems for astronomic investigations, including femtosecond lasers for space studies, are considered. It is assumed that the development of these methods will provide direct measurements of the accelerated expansion of the Universe.

Fulltext pdf (624 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0185.201508b.0817
Keywords: laser frequency combs, femtosecond fiber laser, cosmic laser, astronomic instruments
PACS: 42.62.−b, 97.82.−j, 98.80.−k (all)
DOI: 10.3367/UFNe.0185.201508b.0817
URL: https://ufn.ru/en/articles/2015/8/b/
000364717300002
2-s2.0-84947731746
2015PhyU...58..762K
Citation: Kryukov P G "Femtosecond lasers for astrophysics" Phys. Usp. 58 762–771 (2015)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 10th, March 2015, revised: 9th, June 2015, 9th, June 2015

Îðèãèíàë: Êðþêîâ Ï Ã «Ôåìòîñåêóíäíûå ëàçåðû äëÿ àñòðîôèçèêè» ÓÔÍ 185 817–827 (2015); DOI: 10.3367/UFNr.0185.201508b.0817

References (43) ↓ Cited by (4) Similar articles (14)

  1. Diddams S A et al. Opt. Lett. 25 186 (2000)
  2. Diddams S A et al. Phys. Rev. Lett. 84 5102 (2000)
  3. Holzwarth R et al. Phys. Rev. Lett. 85 2264 (2000)
  4. Hall J L et al. IEEE J. Quantum Electron. 37 1482 (2001)
  5. Udem T, Holzwarth R, Hänsch T W Nature 416 233 (2002)
  6. Fermann M E, Galvanauskas A, Sucha G (Eds) Ultrafast Lasers: Technology And Applications (Optical Engineering) Vol. 80 (New York: Marcel Dekker, 2003)
  7. Kryukov P G Lazery Ul’trakorotkikh Impul’sov i Ikh Primeneniya (Dolgoprudnyi: Intellekt, 2012)
  8. Kryukov P G Usp. Fiz. Nauk 183 897 (2013); Kryukov P G Phys. Usp. 56 849 (2013)
  9. Baklanov E V, Chebotaev V P Kvantovaya Elektron. 4 1252 (1977); Baklanov E V, Chebotaev V P Sov. J. Quantum Electron. 7 1252 (1977)
  10. Kholl Dzh L Usp. Fiz. Nauk 176 1353 (2006); Hall J L Rev. Mod. Phys. 78 1279 (2006)
  11. Khensh T V Usp. Fiz. Nauk 176 1368 (2006); Hänsch T W Rev. Mod. Phys. 78 1297 (2006)
  12. Jones D J et al. Science 288 635 (2000)
  13. Alfano R R, Shapiro S L Phys. Rev. Lett. 24 584 (1970)
  14. Knight J C et al. Opt. Lett. 21 1547 (1996)
  15. Ranka J K, Windeler R S, Stentz A J Opt. Lett. 25 25 (2000)
  16. Spence D E, Kean P N, Sibbett W Opt. Lett. 16 42 (1991)
  17. Bartels A, Heinecke D, Diddams S A Science 326 681 (2009)
  18. Endo M, Ito I, Kobayashi Y Opt. Express 23 1276 (2015)
  19. Keller U et al. IEEE J. Sel. Top. Quantum Electron. 2 435 (1996)
  20. Hoffmann M et al. Opt. Express 19 8108 (2011)
  21. Haus H A et al. IEEE J. Quantum Electron. 31 591 (1995)
  22. Newbury N R, Swann W C J. Opt. Soc. Am. B 24 1756 (2007)
  23. Gubin M A i dr. Kvantovaya Elektronika 38 613 (2008); Gubin M A et al. Quantum Electron. 38 613 (2008)
  24. Gubin M A et al. Appl. Phys. B 95 661 (2009)
  25. Steinmetz T et al. Appl. Phys. B 96 251 (2009)
  26. Baklanova D et al. Astron. Nachr. 332 939 (2011)
  27. Mayor M et al. The Messenger (114) 20 (2003)
  28. Parry I R New Astron. Rev. 50 301 (2006)
  29. Osterman S N et al. Proc. SPIE 9147 91475C (2014)
  30. Murphy M T et al. Mon. Not. R. Astron. Soc. 380 839 (2007)
  31. Wilken T et al. Mon. Not. R. Astron. Soc. 405 L16 (2010)
  32. Wilken T et al. Nature 485 611 (2012)
  33. Ycas G G et al. Opt. Express 20 6631 (2012)
  34. Valyavin G G i dr. Astrofiz. Byull. 69 239 (2014); Valyavin G G et al. Astrophys. Bull. 69 224 (2014)
  35. Sandage A Astrophys. J. 136 319 (1962)
  36. Perlmutter C Usp. Fiz. Nauk 183 1060 (2013); Perlmutter S Rev. Mod. Phys. 84 1127 (2012)
  37. Shmidt B P Usp. Fiz. Nauk 183 1078 (2013); Schmidt B P Rev. Mod. Phys. 84 1151 (2012)
  38. Riss A Dzh Usp. Fiz. Nauk 183 1090 (2013); Riess A G Rev. Mod. Phys. 84 1165 (2012)
  39. Liske J et al. Mon. Not. R. Astron. Soc. 386 1192 (2008)
  40. Pasquini L et al. Proc. SPIE 7735 77352F (2010)
  41. Coddington I et al. Nature Photon. 3 351 (2009)
  42. Lee J et al. Nature Photon. 4 716 (2010)
  43. Lee J et al. Sci. Rep. 4 5134 (2014)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions