Issues

 / 

2015

 / 

May

  

Methodological notes


Mechanisms of direct laser nanostructuring of materials

 a,  b
a Institute of Problems of Electrophysics of the Russian Academy of Sciences, Dvortsovaya nab. 18, St. Petersburg, 19118, Russian Federation
b Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991, Russian Federation

In the given paper recent results of authors on development of physical mechanisms and theoretical models of direct laser surface nanostructuring are reviewed. The attention is paid to nanosecond lasers, as they are cheaper and simpler in use compared to pico-, and femtosecond lasers, which is important for the development of further applications. The formation of so-called "nonresonant" structures, whose period is not directly related to laser radiation wavelength, is considered. Nanostructuring mechanisms for a number of surface modification processes with melting and without melting are studied. Corresponding experimental illustrations of nanostructures are given for various materials — polymers, metals, ceramics and diamond film.

Fulltext pdf (313 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0185.201505c.0489
Keywords: nanostructuring, laser, surface, melting, vaporization, deposition, thermal stress
PACS: 79.20.Eb, 81.07.−b (all)
DOI: 10.3367/UFNe.0185.201505c.0489
URL: https://ufn.ru/en/articles/2015/5/c/
000360073200003
2-s2.0-84938892313
2015PhyU...58..455K
Citation: Khomich V Yu, Shmakov V A "Mechanisms of direct laser nanostructuring of materials" Phys. Usp. 58 455–465 (2015)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 26th, January 2015, revised: 16th, February 2015, 17th, February 2015

Оригинал: Хомич В Ю, Шмаков В А «Механизмы и модели прямого лазерного наноструктурирования материалов» УФН 185 489–499 (2015); DOI: 10.3367/UFNr.0185.201505c.0489

References (38) Cited by (38) ↓ Similar articles (13)

  1. Khomich Yu V, Malinskiy T V et al Acta Astronautica 225 556 (2024)
  2. Khomich Yu V, Mikolutskiy S I Acta Astronautica 215 398 (2024)
  3. Zheleznov V Yu, Malinsky T V et al Izv. Vysš. Učebn. Zaved., Mater. èlektron. Teh. 26 89 (2023)
  4. Slyadnikov E E, Turchanovskiy I Yu Russ Phys J 65 1636 (2023)
  5. Zheleznov V Yu, Malinskii T V et al Russ Microelectron 52 741 (2023)
  6. Khomich Yu V, Mikolutskiy S I Acta Astronautica 194 442 (2022)
  7. Smirnov S V, Shandarov S M, Karanskii V V J. Commun. Technol. Electron. 67 S101 (2022)
  8. Malinskii T V, Rogalin V E, Yamshchikov V A Phys. Metals Metallogr. 123 178 (2022)
  9. Korostelev S Yu, Slyadnikov E E, Turchanovsky I Yu Russ Phys J 65 1290 (2022)
  10. Kaplunov I, Malinskiy T et al MSF 1049 11 (2022)
  11. Yolkin V N, Malinsky T V et al Inorg. Mater. Appl. Res. 12 762 (2021)
  12. Zheleznov Yu A, Malinskiy T V et al Russ. Metall. 2021 373 (2021)
  13. Zheleznov Yu A, Malinskii T V et al Russ. Metall. 2021 1233 (2021)
  14. Murzin S P, Balyakin V B et al 2021 International Conference on Information Technology and Nanotechnology (ITNT), (2021) p. 1
  15. Mikolutsky S I, Khomich Yu V Phys. Metals Metallogr. 122 148 (2021)
  16. Malinskiy T, Mikolutskiy S et al J. Phys.: Conf. Ser. 1925 012003 (2021)
  17. Malinskiy T, Mikolutskiy S et al J. Phys.: Conf. Ser. 2052 012024 (2021)
  18. Smirnov S, Shandarov S, Karanskiy V Usp. Prikl. Fiz. 9 224 (2021)
  19. Khomich Yu, Yamshchikov V Springer Proceedings In Materials Vol. Advanced MaterialsThe Effect of Preliminary Laser Surface Treatment on the Mechanical Properties of a Solid-Phase Compound of an Iron-Nickel Alloy in Diffusion Welding6 Chapter 6 (2020) p. 61
  20. Slyadnikov E E, Khon Yu A et al J Eng Phys Thermophy 93 389 (2020)
  21. Khomich Yu, Malinskiy T et al IOP Conf. Ser.: Mater. Sci. Eng. 939 012035 (2020)
  22. Yolkin V N, Malinskiy T V et al Inorg. Mater. Appl. Res. 11 598 (2020)
  23. Khomich V, Yamshchikov V, Mikolutskiy S Springer Proceedings In Materials Vol. Advanced MaterialsFormation of Surface Micro and Nanostructures When Exposed to Laser UV and VUV Radiation of Nanosecond Duration6 Chapter 5 (2020) p. 49
  24. Malinskiy T V, Mikolutskiy S I et al Tech. Phys. Lett. 46 831 (2020)
  25. Khomenko A, Yushchenko O, Badalian A Symmetry 12 1914 (2020)
  26. Slyadnikov E E, Turchanovsky I Yu, Kaminsky P P Russ Phys J 63 699 (2020)
  27. Khomich Yu V, Malinskiy T V et al J. Phys.: Conf. Ser. 1697 012254 (2020)
  28. Volkova M A, Korneev Yu A et al 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), (2019) p. 2282
  29. Zhikharev A V, Bayankin V Ya et al J. Synch. Investig. 13 1071 (2019)
  30. Poklonski N A, Vyrko S A et al Mater. Res. Express 6 042002 (2019)
  31. Khomich V Yu, Shmakov V A Dokl. Phys. 64 1 (2019)
  32. Ilyushin M A, Tver’yanovich A S et al Glass Phys Chem 44 120 (2018)
  33. Yushchenko O V, Badalyan A Yu 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP), (2018) p. 1
  34. Amelkin S V TSU Herald. Phys Math Model. Oil, Gas, Energy 4 33 (2018)
  35. Zheleznov Yu A, Malinsky T V et al Inorg. Mater. Appl. Res. 9 460 (2018)
  36. Ilyushin M A, Kozlov A S et al Glass Phys Chem 43 111 (2017)
  37. Logunov L S, Bal’makov M D, Kochemirovskii V A Glass Phys Chem 42 218 (2016)
  38. Andrievski R A, Khatchoyan A V Springer Series In Materials Science Vol. Nanomaterials in Extreme EnvironmentsMechanical Actions Effect upon Nanomaterials230 Chapter 4 (2016) p. 55

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions