Issues

 / 

2015

 / 

November

  

Methodological notes


Lagrange equations of motion of particles and photons in the Schwarzschild field


Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

The equations of motion of a particle in the gravitational field of a black hole are considered in a formulation which uses generalized coordinates, velocities and accelerations and is convenient for finding the integrals of motion. The equations are rewritten in terms of the physical velocities and accelerations measured in the Schwarzschild frame by a stationary observer using proper local length and time standards. The attractive force due to the field and the centripetal acceleration of a particle are proportional to the particle's kinetic energy m/√1−v2, consistent with the fact that the particle's kinetic energy and the photon's energy ħω in the field increase by the same amount from their out-of-the-field values. The attraction exerted on particles and photons by the gravitational field source is proportional to their kinetic energies. The particle trajectory in the ultrarelativistic limit v → 1 coincides with the photon trajectory.

Fulltext is available at IOP
Keywords: gravitational field, Schwarzschild's geometry, mass and energy in gravitation
PACS: 03.30.+p
DOI: 10.3367/UFNe.0185.201511h.1229
URL: https://ufn.ru/en/articles/2015/11/g/
Citation: Ritus V I "Lagrange equations of motion of particles and photons in the Schwarzschild field" Phys. Usp. 58 1118–1123 (2015)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 2nd, July 2015, 22nd, September 2015

Оригинал: Ритус В И «Лагранжевы уравнения движения частиц и фотонов в шварцшильдовском поле» УФН 185 1229–1234 (2015); DOI: 10.3367/UFNr.0185.201511h.1229

References (11) Cited by (2) Similar articles (20) ↓

  1. V.I. Ritus “Permutation asymmetry of the relativistic velocity addition law and non-Euclidean geometry51 709–721 (2008)
  2. V.I. Ritus “On the difference between Wigner’s and Møller’s approaches to the description of Thomas precession50 95–101 (2007)
  3. P.B. Ivanov “On relativistic motion of a pair of particles having opposite signs of masses55 1232–1238 (2012)
  4. V.A. Aleshkevich “On special relativity teaching using modern experimental data55 1214–1231 (2012)
  5. V.I. Ritus “Generalization of the k coefficient method in relativity to an arbitrary angle between the velocity of an observer (source) and the direction of the light ray from (to) a faraway source (observer) at rest63 601–610 (2020)
  6. V.I. Ritus “Duality of two-dimensional field theory and four-dimensional electrodynamics leading to finite value of the bare charge56 565–589 (2013)
  7. A.A. Logunov “The theory of the classical gravitational field38 179–193 (1995)
  8. V.P. Makarov, A.A. Rukhadze “Force acting on a substance in an electromagnetic field52 937–943 (2009)
  9. M.I. Krivoruchenko “Rotation of the swing plane of Foucault’s pendulum and Thomas spin precession: two sides of one coin52 821–829 (2009)
  10. I.N. Toptygin “Quantum description of a field in macroscopic electrodynamics and photon properties in transparent media60 935–947 (2017)
  11. S.I. Blinnikov, L.B. Okun, M.I. Vysotskii “Critical velocities c/sqrt{3} and c/sqrt{2} in the general theory of relativity46 1099–1103 (2003)
  12. V.L. Ginzburg, V.P. Frolov “Vacuum in a homogeneous gravitational field and excitation of a uniformly accelerated detector30 1073–1095 (1987)
  13. G.B. Malykin “Sagnac effect in ring lasers and ring resonators. How does the refraction index of the optical medium influence the sensitivity to rotation?57 714–720 (2014)
  14. A.I. Musienko, L.I. Manevich “Classical mechanical analogs of relativistic effects47 797–820 (2004)
  15. G.B. Malykin “The Sagnac effect: correct and incorrect explanations43 1229 (2000)
  16. G.B. Malykin “The relation of Thomas precession to Ishlinskii’s theorem as applied to the rotating image of a relativistically moving body42 505–509 (1999)
  17. B.M. Bolotovskii, A.V. Serov “Special features of motion of particles in an electromagnetic wave46 645–655 (2003)
  18. I.M. Tsidil’kovskii “Electrons and holes in an inertial-force field18 161–166 (1975)
  19. V.B. Braginskii “Adolescent years of experimental physics46 81–87 (2003)
  20. J. Gaite “The relativistic virial theorem and scale invariance56 919–931 (2013)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions