From the current literature

On thermonuclear processes in cavitation bubbles

 a,  b,  c,  d,  b
a P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, ul. Krasikova 23, Moscow, 117218, Russian Federation
b Rensselaer Polytechnic Institute, 8th Street 110, Troy, New York, 12180-3590, USA
c Purdue University, West Lafayette, Indiana, USA
d Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

The theoretical and experimental foundations of so-called bubble nuclear fusion are reviewed. In the nuclear fusion process, a spherical $\sim 10^{-2}$ m diameter cavitation cluster of spherical bubbles is produced at the center of a cylindrical chamber filled with deuterated acetone using a focused acoustic field having a resonant frequency of about 20 kHz. The acoustically-forced bubbles perform volume oscillations with sharp collapses during the compression stage. During the final stages of collapse, the bubble cluster emitted 2.5 MeV D–D fusion neutron pulses at a rate of $\sim 2000$ per second. The neutron yield was $\sim 10^5$ s-1. In parallel, tritium nuclei were produced at the same yield. It is shown numerically that for bubbles having sufficient molecular mass, spherical shock waves develop in the center of the cluster and that these spherical shock waves (microshocks) produce converging shocks within the interior bubbles which focus energy to the centers of the bubbles.When these shock waves reflect from the bubble’s centers, extreme conditions of temperature ($\sim 10^8$ K) and density ($\sim 10^4$ kg m-3) arise in a (nano)spherical region ($\sim 10^{-7}$ m in size) that last for $\sim 10^{-12}$ s, during which time about ten D–D fusion neutrons and tritium nuclei are produced in the region. A paradoxical result is that in our experiments it is bubble cluster (not streamer) cavitation and the sufficiently high molecular mass of (and hence the low sound speed in) the D-acetone (C_3D_6O) vapor (as compared, for example, to deuterated water D_2O) which are necessary conditions for the formation of convergent spherical microshock waves in central cluster bubbles. It is these waves that allow the energy to be sufficiently focused in the nanospherical regions near the bubble centers for fusion events to occur. The criticism to which the concept of the ’bubble fusion’ was subjected in the literature, in particular, most recently in Uspekhi Fizicheskikh Nauk (Physics—Uspekhi) journal, is discussed.

Fulltext is available at IOP
PACS: 28.52.−s, 47.40.Nm, 52.50.Lp (all)
DOI: 10.3367/UFNe.0184.201409b.0947
Citation: Nigmatulin R I, Lahey R T (Jr.), Taleyarkhan R T, West C, Block R C "On thermonuclear processes in cavitation bubbles" Phys. Usp. 57 877–890 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 30th, December 2013, revised: 24th, March 2014, 8th, April 2014

Оригинал: Нигматулин Р И, Лэхи Р Т (мл.), Талейархан Р П, Вест К Д, Блок Р С «О термоядерных процессах в кавитирующих пузырьках» УФН 184 947–960 (2014); DOI: 10.3367/UFNr.0184.201409b.0947

References (37) ↓ Cited by (16) Similar articles (2)

  1. Zababakhin E I, Zababakhin I E Yavleniya Neogranichennoi Kumulyatsii (M.: Nauka, 1988); Zababakhin E, Zababakhin I Unlimited Cumulation Phenomena (Moscow: Nauka Publ., 1990)
  2. Zababakhin E I Some Problems Of The Gasdynamics Of Explosions (Snezhinsk: RFNC — VNIITF Publ. House, 2001)
  3. Zel’dovich Ya B, Raizer Yu P Fizika Udarnykh Voln i Vysokotemperaturnykh Gidrodinamicheskikh Yavlenii (M.: Fizmatlit, 2008); Zel’dovich Ya B, Raizer Yu P Physics Of Shock Waves And High-Temperature Hydrodynamic Phenomena (New York: Academic Press, 1966 - 1967)
  4. Crum L A, Matula T J Science 276 1348 (1997)
  5. Margulis M A Usp. Fiz. Nauk 170 263 (2000); Margulis M A Phys. Usp. 43 259 (2000)
  6. Young F R Sonoluminescence (Boca Raton: CRC Press, 2005)
  7. Moss W C et al. Phys. Lett. A 211 69 (1996)
  8. Nigmatulin R I et al. Sonochemistry And Sonoluminescence (NATO ASI Ser., Ser. C) Vol. 524 (Eds L A Crum et al.) (Dordrecht: Kluwer Acad. Publ., 1999)
  9. Nigmatulin R I et al. Phys. Fluids 17 107106 (2005)
  10. Taleyarkhan R P et al. Science 295 1868 (2002)
  11. Taleyarkhan R P et al. Phys. Rev. E 69 036109 (2004)
  12. Nigmatulin R I et al. J. Power Energy 218 345 (2004)
  13. Nigmatulin R I i dr. Vest. Akad. Nauk Resp. Bashkortostan 7 (4) (2002)
  14. Nigmatulin R Nucl. Eng. Design 235 1079 (2005)
  15. Taleyarkhan R P, Lahey R T (Jr.), Nigmatulin R I Multiphase Sci. Technol. 17 191 (2005)
  16. Lahey R T (Jr.) et al. Adv. Heat Transfer 39 1 (2006)
  17. Taleyarkhan R P et al. Phys. Rev. Lett. 96 034301 (2006)
  18. Taleyarkhan R P et al. Nucl. Eng. Design 238 2779 (2008)
  19. Taleyarkhan R P, Lahey R T (Jr.), Nigmatulin R I Nuclear Energy Encyclopedia: Science, Technology, And Applications (Eds S B Krivit, J H Lehr, T B Kingery) (Hoboken, N.J.: Wiley, 2011) p. 553, Ch. 46
  20. Xu Y, Butt A Nucl. Eng. Design 235 1317 (2005)
  21. Kennedy D Science 295 1793 (2002)
  22. Reich E S Nature News (2006), March 8; Reich E S Nature News (2006), July 22; Reich E S Nature News (2006), August 29
  23. Krivit S New Energy Times (2013), July 18; Krivit S New Energy Times (2014), Jan. 20;
  24. Goverdovskii A A, Imshennik V S, Smirnov V P Usp. Fiz. Nauk 183 445 (2013); Goverdovskii A A, Imshennik V S, Smirnov V P Phys. Usp. 56 423 (2013)
  25. Shapira D, Saltmarsh M Phys. Rev. Lett. 89 104302 (2002)
  26. Forringer E R, Robbins D, Martin J Trans. Am. Nucl. Soc. 95 736 (2006)
  27. Abramov A I, Kazanskii Yu A, Matusevich E S Osnovy Eksperimental’nykh Metodov Yadernoi Fiziki (M.: Energoatomizdat, 1985)
  28. Knoll G F Radiation Detection And Measurement (New York: Wiley, 1989)
  29. Taleyarkhan R P et al. arXiv:1307.3217
  30. X-5 Monte Carlo Team "MCNP" LANL-UR-03-1987 (2003)
  31. Dickens J K "SCINFUL" ORNL-6462 (1988)
  32. Lee J H, Lee C S Nucl. Instrum. Meth. Phys. Res. A 402 147 (1998)
  33. Naranjo B Phys. Rev. Lett. 97 149403 (2006)
  34. Nigmatulin R I Dinamika Mnogofaznykh Sred Vol. 1 (M.: Nauka, 1987); Nigmatulin R I Dynamics Of Multiphase Media Vol. 1 (New York: Hemisphere Publ. Corp., 1991)
  35. Kedrinskii V K Gidrodinamika Vzryva: Eksperiment i Modeli (Novosibirsk: Izd-vo SO RAN, 2000); Kedrinskii V K Hydrodynamics Of Explosions: Experiment And Models (Berlin: Springer, 2005)
  36. Bosch H-S, Hale G M Nucl. Fusion 32 611 (1992)
  37. Nigmatulin R I i dr. Priklad. Mekh. Tekh. Fiz. 55 (3) 82 (2014); Nigmatulin R I et al. J. Appl. Mech. Tech. Phys. 55 444 (2014)

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions