Issues

 / 

2014

 / 

June

  

Methodological notes


Analytical mechanics and field theory: derivation of equations from energy conservation

 a, b
a Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, prosp. akad. Lavrenteva 11, Novosibirsk, 630090, Russian Federation
b Korea Atomic Energy Research Institute, Daedeok-Daero, Yuseong-gu, Daejeon, 305-353, Republic of Korea

Equations of motion in mechanics and field equations in field theory are conventionally derived using the least action principle. This paper presents a nonvariational derivation of Hamilton’s and Lagrange’s equations. The derivation starts by specifying the system energy as a function of generalized coordinates and velocities and then introduces generalized momenta in such a way that the energy remains unchanged whatever degree of freedom is varied. This immediately leads to Hamilton’s equations with as yet undefined Hamiltonian. The explicit dependence of generalized momenta on the coordinates and velocities is determined by first finding the Lagrangian from the known energy function. The paper uses electrodynamics as an illustrative example. The proposed approach provides new insight into the nature of canonical momenta and offers a way to find the Lagrangian from the known energy of the system.

Fulltext pdf (428 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0184.201406c.0641
PACS: 03.50.De, 45.20.Jj (all)
DOI: 10.3367/UFNe.0184.201406c.0641
URL: https://ufn.ru/en/articles/2014/6/c/
000341906900003
2-s2.0-84907013470
2014PhyU...57..593V
Citation: Vinokurov N A "Analytical mechanics and field theory: derivation of equations from energy conservation" Phys. Usp. 57 593–596 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 5th, August 2013, revised: 29th, October 2013, 29th, October 2013

Оригинал: Винокуров Н А «Вывод уравнений аналитической механики и теории поля из закона сохранения энергии» УФН 184 641–644 (2014); DOI: 10.3367/UFNr.0184.201406c.0641

References (9) ↓ Cited by (4) Similar articles (20)

  1. Landau L D, Lifshits E M Mekhanika 4-e izd. (M.: Nauka, 1988); Landau L D, Lifshitz E M Mechanics 3rd ed. (Oxford: Pergamon, 1974)
  2. Gantmakher F R Lektsii Po Analiticheskoi Mekhanike 3-e izd. (M.: Fizmatlit, 2002); Gantmacher F Lectures In Analytical Mechanics (Moscow: Mir, 1975)
  3. Sommerfeld A Lectures On Theoretical Physics Vol. 1 Mechanics 4th ed. (New York: Academic Press, 1964); Zommerfel’d A Mekhanika (Izhevsk: RKhD, 2001)
  4. Lanczos C The Variational Principles Of Mechanics 4th ed. (Toronto: Univ. of Toronto Press, 1970); Lanczos C The Variational Principles Of Mechanics 4th ed. (Toronto: Univ. of Toronto Press, 1986); Lantsosh K Variatsionnye Printsipy Mekhaniki (M.: Mir, 1965)
  5. José J V, Saletan E J Classical Dynamics: A Contemporary Approach (Cambridge: Cambridge Univ. Press, 1998)
  6. Gantmakher F R Teoriya Matrits 5-e izd. (M.: Fizmatlit, 2004); Gantmacher F R Applications Of The Theory Of Matrices Vol. 1, 2 (New York: Interscience Publ., 1959)
  7. Heitler W The Quantum Theory Of Radiation 3rd ed. (Oxford: Clarendon Press, 1954); Gaitler V Kvantovaya Teoriya Izlucheniya (M.: IL, 1956)
  8. Ginzburg V L Teoreticheskaya Fizika i Astrofizika: Dopolnitel’nye Glavy 2-e izd. (M.: Nauka, 1981); Ginzburg V L Theoretical Physics And Astrophysics (Oxford: Pergamon Press, 1979)
  9. Courant R, Hilbert D Methods Of Mathematical Physics Vol. 2 Partial Differential Equations (New York: Interscience Publ., 1989); Kurant R Uravneniya s Chastnymi Proizvodnymi (M.: Mir, 1964)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions