Issues

 / 

2014

 / 

November

  

Instruments and methods of investigation


Hybrid systems for transuranic waste transmutation in nuclear power reactors: state-of-the art and future prospects

 a, b, c,  a, b, c
a Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, prosp. akad. Lavrenteva 11, Novosibirsk, 630090, Russian Federation
b Nuclear Safety Institute, Russian Academy of Sciences (IBRAE), ul. Bolshaya Tulskaya 52, Moscow, 113191, Russian Federation
c Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russian Federation

The features of subcritical hybrid systems (HSs) are discussed in the context of burning up transuranic wastes from the U—Pu fuel cycle. The advantages of HSs over conventional atomic reactors are considered, and fuel cycle closure alternatives using HSs and fast neutron reactors are comparatively evaluated. The advantages and disadvantages of two HS types with neutron sources (NSs) of a widely different nature — nuclear spallation in a heavy target by protons and nuclear fusion in magnetically confined plasma — are discussed in detail. The strengths and weaknesses of HSs are examined, and demand for them for closing the U—Pu fuel cycle is assessed.

Text can be downloaded in Russian. English translation is available here.
PACS: 28.41.−i, 28.65.+a, 29.25.Dz, 52.55.Fa, 52.55.Jd (all)
DOI: 10.3367/UFNe.0184.201411f.1237
URL: https://ufn.ru/en/articles/2014/11/e/
Citation: Yurov D V, Prikhodko V V "Hybrid systems for transuranic waste transmutation in nuclear power reactors: state-of-the art and future prospects" Phys. Usp. 57 1118–1129 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 18th, December 2013, revised: 12th, August 2014, 2nd, September 2014

Оригинал: Юров Д В, Приходько В В «Гибридные системы для дожигания трансурановых отходов атомных энергетических установок: состояние исследований и перспективы» УФН 184 1237–1248 (2014); DOI: 10.3367/UFNr.0184.201411f.1237

References (57) ↓ Cited by (16) Similar articles (8)

  1. Apse V A i dr. Fiziko-tekhnicheskie Osnovy Sovremennoi Atomnoi Energetiki. Perspektivy i Ekologicheskie Aspekty (Dolgoprudnyi: Intellekt, 2014)
  2. Shmelev A N i dr. Atomnaya Energiya 73 450 (1992); Shmelev A N et al. Atom. Energy 73 963 (1992)
  3. Wallenius J Nucl. Eng. Technol. 44 199 (2012)
  4. IAEA, Evaluated Nuclear Data File, https://www-nds.iaea.org/exfor/endf.htm
  5. Wallenius J, Eriksson M Nucl. Technol. 152 367 (2005)
  6. Hoffman E A, Yang W S, Hill R N "Preliminary core design studies for the Advanced Burner Reactor over a wide range of conversion ratios" ANL Report ANL-AFCI-177 (Argonne, Ill.: Argonne National Laboratory, 2006); http://www.ipd.anl.gov/anl pubs/2008/05/61507.pdf
  7. Messaoudi N, Tommasi J Nucl. Technol. 137 84 (2002)
  8. Ando Y, Nishihara K, Takano H J. Nucl. Sci. Technol. 37 924 (2000)
  9. "Status of minor actinide fuel development" IAEA Nuclear Energy Series technical report NF-T-4.6 (Vienna: IAEA, 2009); http://www-pub.iaea.org/MTCD/Publications/PDF/Pub1415_web.pdf
  10. Mansani L et al. Nucl. Technol. 180 241 (2012)
  11. Pignatel J F et al. Nucl. Technol. 180 264 (2012)
  12. "Accelerator-driven Systems (ADS) and Fast Reactors (FR) in advanced nuclear fuel cycle. A comparative study" OECD/NEA Report (Paris: OECD Publ., 2002); https://www.oecd-nea.org/ndd/reports/2002/nea3109-ads.pdf
  13. "Advanced nuclear fuel cycles and radioactive waste management" OECD/NEA Report 5990 (Paris: OECD Publ., 2006); https://www.oecd-nea.org/ndd/pubs/2006/5990-advanced-nfc-rwm.pdf
  14. Salvatores M, Palmiotti G Prog. Part. Nucl. Phys. 66 144 (2011)
  15. Polozov S M, Fertman A D Atomnaya Energiya 113 (3) 155 (2012); Polozov S M, Fertman A D Atom. Energy 113 192 (2013)
  16. MYRRHA: Multi-purpose hybrid research reactor for high-tech applications, http://myrrha.sckcen.be/en
  17. Vandeplassche D et al. Proc. IPAC 2011 Conf., San Sebastian, Spain, September 2011 p. 2718; Vandeplassche D et al. http://accelconf.web.cern.ch/Accel-Conf/IPAC2011/papers/weps090.pdf
  18. "SNS Parameters List" SNS 100000000-PL0001-R13 (ORNL, 2005); http://neutrons.ornl.gov/media/pubs/pdf/sns_parameters _list_june05.pdf
  19. Vandeplassche D, Romão L M Proc. IPAC 2012 Conf., New Orleans, USA, May 2012 (2012) p. 6; Vandeplassche D, Romão L M http://ipnwww.in2p3.fr/MAX/images/stories/downloads/SCK-CEN_IPAC12.pdf
  20. "Accelerator and spallation target technologies for ADS applications (A status report)" OECD/NEA Report 5421 (Paris: OECD Publ., 2005); https://www.oecd-nea.org/science/docs/pubs/nea5421-accelerator.pdf
  21. Kapchinskii I M Usp. Fiz. Nauk 132 639 (1980); Kapchinskii I M Sov. Phys. Usp. 23 835 (1980)
  22. Wangler T P "Reliable—Linac Design for accelerator-driven subcritical reactor systems" LANL Report LAUR-02-6684 (Los Alamos, NM: Los Alamos National Laboratory, 2002); Wangler T P http://library.lanl.gov/cgi-bin/getfile?00937251.pdf
  23. Kravchuk L V Proc. of the XXI Russian Particle Accelerators Conf., RuPAC, 2008, Zvenigorod, Russia p. 137
  24. Pottin B et al. Proc. of LINAC 2012, Tel-Aviv, Israel p. 921
  25. Wei J et al. Proc. HB 2006 p. 39
  26. Tsujimoto K et al. J. Nucl. Sci. Technol. 41 21 (2004)
  27. Suzuki H Proc. of APAC 2004, Gyeongju, Korea p. 499
  28. Callaway N T et al. Proc. of the 1997 Particle Accelerator Conf. Vol. 1 (New York: IEEE, 1998) p. 1165
  29. Vernon S H Proc. of the 2001 Particle Accelerator Conf. Vol. 5 (New York: IEEE, 2001) p. 3296
  30. Kwon H J et al. Proc. of LINAC 2012, Tel-Aviv, Israel p. 422
  31. Grillenberger J et al. Proc. of Cyclotrons, 2013, Vancouver, BC, Canada p. 37
  32. Park W S et al. Nucl. Eng. Design 199 155 (2000)
  33. Dutto G Trudy XIII Mezhdunarod. konf. po uskoritelyam chastits vysokikh energii, Novosibirsk, 7 - 11 avgusta 1986 Vol. 1 (Otv. red. A N Skrinskii) (Novosibirsk: Nauka, 1987) p. 270
  34. Moses E I et al. Fusion Sci. Technol. 56 547 (2008)
  35. Third Fusion-Fission Hybrids Workshop, East-West Science Center of the Univ. of Maryland, USA, 2009
  36. Workshop on Fusion for Neutrons and Sub-Critical Nuclear Fission, Villa Monastero, Italy, 2011
  37. Abdou M A "Tritium breeding in fusion reactors" ANL/FPP/TM-165 (1982); Abdou M A Nuclear Data for Science and Technology. Proc. of the Intern. Conf., 6-10 September 1982 (Ed. K H Böckhoff) (Brussels: ECSC, EEC, 1983) p. 293
  38. Stacey W M et al. Nucl. Technol. 162 53 (2008)
  39. Noack K et al. Ann. Nucl. Energy 35 1216 (2008)
  40. Jacquinot J and the JET team Plasma Phys. Control. Fusion 41 A13 (1999)
  41. http://www.efda.org/jet
  42. http://www.iter.org/
  43. Aymar R, Barabaschi P, Shimomura Y Plasma Phys. Control. Fusion 44 519 (2002)
  44. Mirnov S AIP Conf. Proc. 1442 15 (2012)
  45. Johnson D W et al. Plasma Phys. Control. Fusion 37 A69 (1995)
  46. Mansfield D K et al. Phys. Plasmas 3 1892 (1996)
  47. Kotschenreuther M et al. Fusion Eng. Design 84 83 (2009)
  48. Kuteev B V i dr. Fizika Plazmy 36 307 (2010); Kuteev B V et al. Plasma Phys. Rep. 36 281 (2010)
  49. Moir R W et al. "Axisymmetric magnetic mirror fusion-fission hybrid" Report LLNL-TR-484071 (2011); Moir R W et al. Fusion Sci. Technol. 61 206 (2012)
  50. Agren O et al. AIP Conf. Proc. 1442 173 (2012)
  51. Anikeev A V, Dagan R, Fischer U Fusion Sci. Technol. 59 (1T) 162 (2011)
  52. Yurov D V et al. Fusion Eng. Design 87 1684 (2012)
  53. Noack K et al. Ann. Nucl. Energy 38 578 (2011)
  54. Beklemishev A D et al. Fusion Sci. Technol. 57 351 (2010)
  55. Rosenbluth M N, Longmire C L Ann. Physics 1 120 (1957)
  56. Ivanov A A, Prikhodko V V Plasma Phys. Control. Fusion 55 063001 (2013)
  57. Ågren O, Savenko N Phys. Plasmas 12 022506 (2005)

© 1918–2019 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions