Issues

 / 

2014

 / 

November

  

Reviews of topical problems


Water dimer and the atmospheric continuum

, , , , ,
Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation

The physical origin of the water-related atmospheric continuum absorption is examined. Existence of double water molecules (dimers) in equilibrium water vapor at room temperature is proved by direct spectroscopic experiment supported by ab initio calculations. It is demonstrated that diluting water vapor by air does not essentially reduce the dimer abundance. Numerous earlier studies have predicted the presence of water dimers in the atmosphere and their influence on chemical reactions, homogeneous condensation and the Earth's radiation balance. Our results provide experimental proof of the presence of dimers in the atmosphere, thus enabling a detailed study of their role in natural processes. Prospects for future research are discussed.

Fulltext pdf (963 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0184.201411c.1199
PACS: 33.20.−t, 36.40.Mr, 51.70.+f, 82.30.Rs, 92.60.Jq, 92.60.Ta (all)
DOI: 10.3367/UFNe.0184.201411c.1199
URL: https://ufn.ru/en/articles/2014/11/c/
000349435700003
2-s2.0-84922741107
2014PhyU...57.1083T
Citation: Tretyakov M Yu, Koshelev M A, Serov E A, Parshin V V, Odintsova T A, Bubnov G M "Water dimer and the atmospheric continuum" Phys. Usp. 57 1083–1098 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 21st, February 2014, revised: 11th, April 2014, 18th, April 2014

Оригинал: Третьяков М Ю, Кошелев М А, Серов Е А, Паршин В В, Одинцова Т А, Бубнов Г М «Димер воды и атмосферный континуум» УФН 184 1199–1215 (2014); DOI: 10.3367/UFNr.0184.201411c.1199

References (146) Cited by (41) ↓ Similar articles (20)

  1. Vinklárek I S, Bromberger H et al J. Phys. Chem. A 128 1593 (2024)
  2. Firsov K M, Chesnokova T Yu, Razmolov A A Atmos Ocean Opt 36 162 (2023)
  3. Plokhotnikov K E Math Models Comput Simul 15 591 (2023)
  4. Rodimova O B Atmos Ocean Opt 36 293 (2023)
  5. Kojić Dušan, Simonova A A, Yasui M Journal Of Quantitative Spectroscopy And Radiative Transfer 301 108538 (2023)
  6. Rodimova O B Atmos Ocean Opt 36 101 (2023)
  7. Lavrentiev N A, Rodimova O B, Fazliev A Z Atmos Ocean Opt 36 622 (2023)
  8. Ovsyannikov R I, Tretyakov M Yu et al Atmos Ocean Opt 36 601 (2023)
  9. Simonova A A, Ptashnik I V Atmos Ocean Opt 35 110 (2022)
  10. Plokhotnikov K E, Plokhotnikov K E Matematicheskoe Modelirovanie 34 75 (2022)
  11. Plokhotnikov K E Phys. Wave Phen. 30 156 (2022)
  12. Plokhotnikov K E Math Models Comput Simul 14 900 (2022)
  13. Plokhotnikov K E, Plokhotnikov K E Matematicheskoe Modelirovanie 34 43 (2022)
  14. Ovsyannikov R I, Makhnev V Yu et al 156 (16) (2022)
  15. Vogt E, Kjaergaard H G Annu. Rev. Phys. Chem. 73 209 (2022)
  16. Kwon Ja-G, Park M-W, Jeon T-I Journal Of Quantitative Spectroscopy And Radiative Transfer 272 107811 (2021)
  17. Collisional Effects on Molecular Spectra (2021) p. 485
  18. Odintsova T A, Serov E A et al Journal Of Quantitative Spectroscopy And Radiative Transfer 258 107400 (2021)
  19. Simonova A A, Ptashnik I V et al 26th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, (2020) p. 96
  20. Odintsova T A, Tretyakov M Yu et al Journal Of Molecular Structure 1210 128046 (2020)
  21. Wolf M E, Turney Ju M, Schaefer H F Phys. Chem. Chem. Phys. 22 25638 (2020)
  22. Mikhailenko S N, Béguier S et al Journal Of Quantitative Spectroscopy And Radiative Transfer 253 107105 (2020)
  23. Aksenov V N, Angeluts A A et al Moscow Univ. Phys. 74 631 (2019)
  24. Polyanskaya A V, Polyanskii A M, Polyanskii V A Tech. Phys. 64 902 (2019)
  25. Hartmann Je-M, Tran H et al Journal Of Quantitative Spectroscopy And Radiative Transfer 213 178 (2018)
  26. Lechevallier L, Vasilchenko S et al Atmos. Meas. Tech. 11 2159 (2018)
  27. Cimini D, Rosenkranz P W et al Atmos. Chem. Phys. 18 15231 (2018)
  28. Ignaczak A, Santos E et al Journal Of Electroanalytical Chemistry 819 410 (2018)
  29. Serov E A, Odintsova T A et al Journal Of Quantitative Spectroscopy And Radiative Transfer 193 1 (2017)
  30. Odintsova T A, Tretyakov M Yu et al Journal Of Quantitative Spectroscopy And Radiative Transfer 187 116 (2017)
  31. Zolotarev V M Opt. Spectrosc. 123 717 (2017)
  32. (22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics) Vol. 22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics Qualitative analysis of model chemical kinetics equations for nucleation of molecular complexes in water vapor Gennadii G.MatvienkoOleg A.RomanovskiiTatyana E.KlimeshinaOlga B.Rodimova10035 (2016) p. 1003509
  33. (22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics) Vol. 22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics The water vapor absorption in the long wave wing of the rotational band Gennadii G.MatvienkoOleg A.RomanovskiiJulia V.BogdanovaOlga B.Rodimova10035 (2016) p. 1003506
  34. Shine K P, Campargue A et al Journal Of Molecular Spectroscopy 327 193 (2016)
  35. (21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics) Vol. 21st International Symposium Atmospheric and Ocean Optics: Atmospheric PhysicsThe D2O absorption spectra in SiO2airgel pores: technical features of treatmentOleg A.RomanovskiiA.LugovskoiA.Duchko9680 (2015) p. 968004
  36. Tretyakov M Yu, Sysoev A A et al Radiophys Quantum El 58 262 (2015)
  37. Sinitsa L N, Serdyukov V I et al Jetp Lett. 102 32 (2015)
  38. Suas-David N, Vanfleteren T et al J. Phys. Chem. A 119 10022 (2015)
  39. Ventrillard I, Romanini D et al 143 (13) (2015)
  40. Slocum D M, Giles R H, Goyette T M Journal Of Quantitative Spectroscopy And Radiative Transfer 159 69 (2015)
  41. Mondelain D, Vasilchenko S et al Phys. Chem. Chem. Phys. 17 17762 (2015)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions