Methodological notes

Excitation of cyclical Sommerfeld waves and Wood’s anomalies in plane wave scattering from a dielectric cylinder at oblique incidence

Fiber Optics Research Center, Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991, Russian Federation

An analysis is presented of the scattering of a plane electromagnetic wave at oblique incidence from a circular dielectric cylinder. Under certain conditions this scattering process involves the excitation of cyclic surface Sommerfeld waves (SWs) capable of traveling large distances along the cylinder. It is shown that the interaction of SWs of low azimuthal order with the cylinder’s continuous (radiation) modes gives rise cyclic Sommerfeld resonances (SRs) analogous to the well-known Wood’s anomalies in the plane wave scattering from one-dimensional metallic diffraction gratings. Conditions necessary for the effective excitation of SWs and SRs are established and how SWs and SRs contribute to mode formation in microstructured optical fibers is discussed.

Fulltext is available at IOP
PACS: 41.20.Jb, 42.25.Bs, 42.25.Fx (all)
DOI: 10.3367/UFNe.0183.201308d.0863
Citation: Pryamikov A D, Biriukov A S "Excitation of cyclical Sommerfeld waves and Wood's anomalies in plane wave scattering from a dielectric cylinder at oblique incidence" Phys. Usp. 56 813–822 (2013)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 28th, November 2012, revised: 26th, February 2013, 27th, February 2013

Оригинал: Прямиков А Д, Бирюков А С «Возбуждение циклических волн Зоммерфельда и аномалии Вуда при скользящем падении плоской волны на диэлектрический цилиндр» УФН 183 863–873 (2013); DOI: 10.3367/UFNr.0183.201308d.0863

References (31) Cited by (8) Similar articles (20) ↓

  1. E.H. Lock “Angular beam width of a slit-diffracted wave with noncollinear group and phase velocities55 1239–1254 (2012)
  2. A.V. Kukushkin, A.A. Rukhadze, K.Z. Rukhadze “On the existence conditions for a fast surface wave55 1124–1133 (2012)
  3. M.V. Davidovich “On energy and momentum conservation laws for an electromagnetic field in a medium or at diffraction on a conducting plate53 595–609 (2010)
  4. A.G. Shalashov, E.D. Gospodchikov “Structure of the Maxwell equations in the region of linear coupling of electromagnetic waves in weakly inhomogeneous anisotropic and gyrotropic media55 147–160 (2012)
  5. S.A. Afanas’ev, D.I. Sementsov “Energy fluxes during the interference of electromagnetic waves51 355–361 (2008)
  6. A.V. Shchagin “Fresnel coefficients for parametric X-ray (Cherenkov) radiation58 819–827 (2015)
  7. V.G. Veselago “Energy, linear momentum, and mass transfer by an electromagnetic wave in a negative-refraction medium52 649–654 (2009)
  8. V.G. Niz’ev “Dipole-wave theory of electromagnetic diffraction45 553–559 (2002)
  9. A.M. Zheltikov “Colors of thin films, antiresonance phenomena in optical systems, and the limiting loss of modes in hollow optical waveguides51 591–600 (2008)
  10. F.V. Ignaovich, V.K. Ignatovich “Optics of anisotropic media55 709–720 (2012)
  11. V.P. Makarov, A.A. Rukhadze “Material equations and Maxwell equations for isotropic media; waves with negative group velocity and negative values of ε (ω) and μ (ω)62 487–495 (2019)
  12. A.I. Frank “Interaction of a wave with an accelerating object and the equivalence principle63 500–502 (2020)
  13. L.P. Strelkova “Interference of 3-cm radio waves in a plane-parallel dielectric layer16 935–936 (1974)
  14. K.S. Vul’fson, L.P. Kovrigin “Observation of Sommerfeld diffraction from a specularly reflecting half-plane11 132–132 (1968)
  15. V.I. Alshits, V.N. Lyubimov “Acoustics and optics of absorptive crystals: a universal formalism for topological effects56 1021–1037 (2013)
  16. A.G. Shalashov, E.D. Gospodchikov “Impedance technique for modeling of electromagnetic wave propagation in anisotropic and gyrotropic media54 145–165 (2011)
  17. A.V. Vashkovsky, E.H. Lock “On the relationship between magnetostatic wave energy and dispersion characteristics in ferrite structures54 281–290 (2011)
  18. V.V. Shevchenko “Forward and backward waves: three definitions and their interrelation and applicability50 287–292 (2007)
  19. A.V. Vashkovskii, E.H. Lokk “Negative refractive index for a surface magnetostatic wave propagating through the boundary between a ferrite and ferrite-insulator-metal media47 601–605 (2004)
  20. A.P. Vinogradov “On the form of constitutive equations in electrodynamics45 331–338 (2002)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions