Issues

 / 

2013

 / 

June

  

Methodological notes


The neutron Berry phase


Joint Institute for Nuclear Research, 6 Joliot-Curie Str., Dubna, Moscow Region, 141980, Russian Federation

The neutron Berry phase is found from a precise analytical solution of the Shrödinger equation in a constant magnetic field $B_{0}$ and perpendicular to it radiofrequency field $b$ rotating with an angular frequency $\omega$. The solution is found for arbitrary values of $B_{0}$, $b$, and $\omega$. The Berry phase is shown to be a linear in parameter $\omega$/$B_{0}$ approximation to the precise value, when this parameter is small.

Fulltext pdf (510 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0183.201306e.0631
PACS: 03.65.−w, 03.65.Vf, 14.20.Dh, 76.50.+g (all)
DOI: 10.3367/UFNe.0183.201306e.0631
URL: https://ufn.ru/en/articles/2013/6/d/
000324296600004
2-s2.0-84888386109
2013PhyU...56..603I
Citation: Ignatovich V K "The neutron Berry phase" Phys. Usp. 56 603–604 (2013)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 26th, May 2012, revised: 17th, May 2013, 15th, November 2012

Оригинал: Игнатович В К «Фаза Берри для нейтрона» УФН 183 631–632 (2013); DOI: 10.3367/UFNr.0183.201306e.0631

References (7) Cited by (1) Similar articles (20) ↓

  1. G.B. Malykin, V.I. Pozdnyakova “Geometric phases in singlemode fiber lightguides and fiber ring interferometersPhys. Usp. 47 289–308 (2004)
  2. V.I. Bodnarchuk, L.S. Davtyan, D.A. Korneev “Geometrical phase effects in neutron opticsPhys. Usp. 39 169–177 (1996)
  3. G.A. Vardanyan, G.S. Mkrtchyan “A solution to the density matrix equationSov. Phys. Usp. 33 (12) 1072–1072 (1990)
  4. S.V. Goupalov “Classical problems with the theory of elasticity and the quantum theory of angular momentumPhys. Usp. 63 57–65 (2020)
  5. K.S. Vul’fson “Angular momentum of electromagnetic wavesSov. Phys. Usp. 30 724–728 (1987)
  6. A.A. Grib “On the problem of the interpretation of quantum physicsPhys. Usp. 56 1230–1244 (2013)
  7. A.V. Belinsky, M.Kh. Shulman “Quantum nature of a nonlinear beam splitterPhys. Usp. 57 1022–1034 (2014)
  8. V.G. Bagrov, D.M. Gitman, A.S. Pereira “Coherent and semiclassical states of a free particlePhys. Usp. 57 891–896 (2014)
  9. Yu.M. Tsipenyuk “Zero point energy and zero point oscillations: how they are detected experimentallyPhys. Usp. 55 796–807 (2012)
  10. E.D. Trifonov “On the spin-statistics theoremPhys. Usp. 60 621–622 (2017)
  11. G.V. Shpatakovskaya “Semiclassical method of analysis and estimation of the orbital binding energies in many-electron atoms and ionsPhys. Usp. 62 186–197 (2019)
  12. I.F. Ginzburg “Particles in finite and infinite one-dimensional chainsPhys. Usp. 63 395–406 (2020)
  13. S.V. Petrov “Was Sommerfeld wrong? (To the history of the appearance of spin in relativistic wave equations)Phys. Usp. 63 721–724 (2020)
  14. B.I. Sturman “Ballistic and shift currents in the bulk photovoltaic effect theoryPhys. Usp. 63 407–411 (2020)
  15. A.N. Rubtsov “On the question of measurement in quantum mechanicsPhys. Usp. 66 734–740 (2023)
  16. K.V. Chukbar “Harmony in many-particle quantum problemPhys. Usp. 61 389–396 (2018)
  17. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)
  18. V.S. Popov “Feynman disentangling оf noncommuting operators and group representation theoryPhys. Usp. 50 1217–1238 (2007)
  19. E.E. Nikitin, L.P. Pitaevskii “Imaginary time and the Landau method of calculating quasiclassical matrix elementsPhys. Usp. 36 (9) 851–853 (1993)
  20. A.S. Tarnovskii “The Bohr-Sommerfeld quantization rule and quantum mechanicsSov. Phys. Usp. 33 (1) 86–86 (1990)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions