Issues

 / 

2013

 / 

June

  

Methodological notes


Duality of two-dimensional field theory and four-dimensional electrodynamics leading to finite value of the bare charge


Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

The holographic duality consisting in the functional coincidence of the spectra of the mean number of photons (or scalar quanta) emitted by a point electric (scalar) charge in 3 + 1-space with the spectra of the mean number of pairs of scalar (spinor) quanta emitted by a point mirror in 1 + 1-space is discussed. Because they are functions of two variables and functionals of the common trajectory of the charge and the mirror, the spectra differ only by a factor $e^{2}/\hbar c$ (Heaviside units). The requirement $e^{2}/\hbar c$ =1 leads to unique values for the magnitude of the point charge and its fine structure constant, $e_{0} = \pm \sqrt {\hbar c}$, $\alpha_{0} = 1/4 \pi$, all their properties being as stated by Gell-Mann and Low for the finite bare charge. This requirement follows from the holographic bare charge quantization principle we propose here, according to which the charge and mirror radiations located correspondingly in four-dimensional space and on its internal two-dimensional surface must have identically coincident spectra. The duality is due to the integral connection of the causal Green functions for 3 + 1- and 1 + 1-spaces and to connections of the current and charge densities in 3 + 1-space with the scalar products of scalar and spinor massless fields in 1 + 1-space. We discuss the close similarity of the values of the point bare charge $e_{0} = \sqrt {\hbar c}$, “charges” $e_\mathrm{B} = 1,077 \sqrt {\hbar c}$ and $e_\mathrm{L} = 1.073 \sqrt {\hbar c}$, characterizing the shifts $e^{2}_\mathrm{B,L} /8\pi a$ of the energy of zero-point electromagnetic oscillations in vacuum by the neutral ideally conducting surfaces of a sphere of radius $a$ and a cube of side 2$a$, and the electron charge $e$ multiplied by $\sqrt {4\pi}$. The near equality $e_\mathrm{L} \approx \sqrt {4 \pi} e$ means that $\alpha_{0} \alpha_\mathrm{L} \approx \alpha$ — the fine structure constant.

Fulltext pdf (766 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0183.201306c.0591
PACS: 03.70.+k, 12.20.−m, 41.60.−m (all)
DOI: 10.3367/UFNe.0183.201306c.0591
URL: https://ufn.ru/en/articles/2013/6/b/
000324296600002
2-s2.0-84888345421
2013PhyU...56..565R
Citation: Ritus V I "Duality of two-dimensional field theory and four-dimensional electrodynamics leading to finite value of the bare charge" Phys. Usp. 56 565–589 (2013)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 27th, July 2012, revised: 30th, April 2013, 7th, May 2013

Оригинал: Ритус В И «Дуальность двумерной теории поля и четырёхмерной электродинамики, приводящая к конечному значению затравочного заряда» УФН 183 591–615 (2013); DOI: 10.3367/UFNr.0183.201306c.0591

References (52) Cited by (3) Similar articles (20) ↓

  1. V.I. Ritus “Finite value of the bare charge and the relation of the fine structure constant ratio for physical and bare charges to zero-point oscillations of the electromagnetic field in a vacuum65 468–486 (2022)
  2. V.S. Popov “Feynman disentangling оf noncommuting operators and group representation theory50 1217–1238 (2007)
  3. L.A. Rivlin “Photons in a waveguide (some thought experiments)40 291–303 (1997)
  4. V.I. Ritus “Lagrange equations of motion of particles and photons in the Schwarzschild field58 1118–1123 (2015)
  5. V.I. Ritus “Generalization of the k coefficient method in relativity to an arbitrary angle between the velocity of an observer (source) and the direction of the light ray from (to) a faraway source (observer) at rest63 601–610 (2020)
  6. V.L. Ginzburg “Radiation and radiation friction force in uniformly accelerated motion of a Charge12 565–574 (1970)
  7. H. Fritzsch “The fundamental constants in physics52 359–367 (2009)
  8. M.V. Kuzelev, A.A. Rukhadze “Nonrelativistic quantum theory of stimulated Cherenkov radiation and Compton scattering in a plasma54 375–380 (2011)
  9. A.V. Shchagin “Fresnel coefficients for parametric X-ray (Cherenkov) radiation58 819–827 (2015)
  10. D.V. Karlovets “On dual representation in classical electrodynamics53 817–824 (2010)
  11. I.N. Toptygin “Quantum description of a field in macroscopic electrodynamics and photon properties in transparent media60 935–947 (2017)
  12. V.S. Malyshevsky “Is it possible to measure the electromagnetic radiation of an instantly started charge?60 1294–1301 (2017)
  13. P.A. Krachkov, A.I. Mil’shtein “An operator derivation of the quasiclassical Green's function61 896–899 (2018)
  14. I.N. Toptygin, G.D. Fleishman “Eigenmode generation by a given current in anisotropic and gyrotropic media51 363–374 (2008)
  15. A.P. Potylitsyn, D.Yu. Sergeeva et alDiffraction radiation from a charge as radiation from a superluminal source in a vacuum63 303–308 (2020)
  16. V.I. Ritus “Permutation asymmetry of the relativistic velocity addition law and non-Euclidean geometry51 709–721 (2008)
  17. V.N. Tsytovich “Collective effects of plasma particles in bremsstrahlung38 87–108 (1995)
  18. V.A. Bordovitsyn, I.M. Ternov, V.G. Bagrov “Spin light38 1037–1047 (1995)
  19. M.I. Krivoruchenko “Transitional currents of spin-1/2 particles37 601–606 (1994)
  20. B.M. Bolotovskii, S.N. Stolyarov “Radiation from and energy loss by charged particles in moving media35 (2) 143–150 (1992)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions