Issues

 / 

2013

 / 

May

  

Methodological notes


Rayleigh convective instability in the presence of phase transitions of water vapor. The formation of large-scale eddies and cloud structures

 a,  a, b, c
a Federal State Budget Organization, Research and Production Association Taifun, Lenina av. 82, Obninsk, Kaluga Region, 249020, Russian Federation
b A M Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Pyzhevskii per. 3, Moscow, 109017, Russian Federation
c Obninsk Institute for Nuclear Power Engineering, Obninsk, Russian Federation

Convective motions in moist saturated air are accompanied by the release of latent heat of condensation. Taking into account this effect, the problem of convective instability of a moist saturated air layer, which generalizes the formulation of the classical Rayleigh problem, is considered. The analytical solution demonstrating the fundamental difference between moist convection and Rayleigh convection is obtained. At the loss of stability in the two-dimensional case solitary convective rolls or spatially periodic chains of rollers with localized areas of upward motion evolve. In the case of axial symmetry the growth of solitary convective vortices with circulation characteristic of tropical cyclones (hurricanes) and the scale of tornado scale to the scale of tropical cyclones is possible.

Fulltext pdf (708 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0183.201305d.0497
PACS: 44.25.+f, 47.20.Bp, 47.27.De, 47.55.P−, 92.60.Ox, 92.60.Qx (all)
DOI: 10.3367/UFNe.0183.201305d.0497
URL: https://ufn.ru/en/articles/2013/5/c/
000322890700003
2-s2.0-84882934940
2013PhyU...56..473S
Citation: Shmerlin B Ya, Kalashnik M V "Rayleigh convective instability in the presence of phase transitions of water vapor. The formation of large-scale eddies and cloud structures" Phys. Usp. 56 473–485 (2013)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 16th, February 2012, revised: 30th, March 2012, 3rd, April 2012

Оригинал: Шмерлин Б Я, Калашник М В «Конвективная неустойчивость Рэлея в присутствии фазовых переходов влаги. Формирование крупномасштабных вихрей и облачных структур» УФН 183 497–510 (2013); DOI: 10.3367/UFNr.0183.201305d.0497

References (28) Cited by (17) ↓ Similar articles (14)

  1. Kopp M I, Yanovsky V V East Eur. J. Phys. (2) 07 (2023)
  2. Kopp M I, Tur A V, Yanovsky V V Ukr. J. Phys. 66 478 (2021)
  3. Kopp M I, Tur A V, Yanovsky V V Geophysical & Astrophysical Fluid Dynamics 115 551 (2021)
  4. Karlovich T B, Sukhotskii A B, Danilchik E S Vescì Akademìì Navuk Belarusì. Seryâ Fizika-matematyčnyh Navuk 57 242 (2021)
  5. Somov S A, Ivanov A S et al J. Phys.: Conf. Ser. 1809 012033 (2021)
  6. Somov S A, Ivanov A S J. Phys.: Conf. Ser. 1945 012055 (2021)
  7. Kalashnik M V, Kurgansky M V Fluid Dyn 55 554 (2020)
  8. Somov S A, Ivanov A S IOP Conf. Ser.: Mater. Sci. Eng. 581 012016 (2019)
  9. Kopp M I, Tour A V, Yanovsky V V J. Exp. Theor. Phys. 127 1173 (2018)
  10. Kopp M I, Tur A V, Yanovsky V V J. Exp. Theor. Phys. 124 1010 (2017)
  11. Shmerlin B Ya, Shmerlin M B J. Exp. Theor. Phys. 125 502 (2017)
  12. Zakinyan R, Zakinyan A et al Atmosphere 7 8 (2016)
  13. Kurgansky M V, Krupchatnikov V N Izv. Atmos. Ocean. Phys. 52 117 (2016)
  14. Yanovsky V V, Tur A V, Kopp M I East Eur. J. Phys. 3 4 (2016)
  15. Bezrukova N A, Chernokulsky A V Izv. Atmos. Ocean. Phys. 52 512 (2016)
  16. Sinkevich O A High Temp 54 775 (2016)
  17. Shmerlin B Ya, Kalashnik M V, Shmerlin M B J. Exp. Theor. Phys. 115 1111 (2012)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions