Methodological notes

A rule for a joint of three boundary lines in phase diagrams

 a, b
a Institute of Solid State Physics, Russian Academy of Sciences, Akademika Osip'yana str. 2, Chernogolovka, Moscow Region, 142432, Russian Federation
b National University ofScience and Technology MISIS, Leninskii prosp. 4, Moscow, 119049, Russian Federation

The rule governing the mutual position of three boundary lines meeting at one point in a two-dimensional phase diagram is derived in a new way using the fact that a boundary line can be extended into the metastable region beyond its intersection point with another line. An improved formulation of the rule is proposed which makes it independent of the diagram axes chosen and suitable for the analysis of two-dimensional sections of phase diagrams of heterogeneous systems with any given number of components. Conditions for and some aspects of the application of the rule are considered using phase diagrams of one-, two- and three-component systems as examples.

Fulltext is available at IOP
PACS: 05.70.Fh, 64.75.−g (all)
DOI: 10.3367/UFNe.0183.201304d.0417
Citation: Antonov V E "A rule for a joint of three boundary lines in phase diagrams" Phys. Usp. 56 395–400 (2013)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 3rd, May 2012, revised: 8th, June 2012, 28th, June 2012

:    «   » 183 417–422 (2013); DOI: 10.3367/UFNr.0183.201304d.0417

References (11) Cited by (1) Similar articles (7) ↓

  1. V.V. Brazhkin, R.N. Voloshin et alPhase equilibria in partially open systems under pressure: the decomposition of stoichiometric GeO2 oxide46 1283–1289 (2003)
  2. Ya.M. Blanter, M.I. Kaganov, D.V. Posvyanskii “De Haas-van Alphen effect as a first-order electronic topological transition38 203–209 (1995)
  3. V.S. Olkhovsky “On time as a quantum observable canonically conjugate to energy54 829–835 (2011)
  4. F.Ya. Khalili “Zero-point oscillations, zero-point fluctuations, and fluctuations of zero-point oscillations46 293–307 (2003)
  5. D.S. Agafontsev, E.A. Kuznetsov et alCompressible vortex structures and their role in the onset of hydrodynamic turbulence”, accepted
  6. N.N. Rosanov “Antilaser: resonance absorption mode or coherent perfect absorption?60 818–821 (2017)
  7. E.A. Andryushin, V.L. Ginzburg, A.P. Silin “Boundary conditions in the macroscopic theory of superconductivity36 (9) 854–857 (1993)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions