Issues

 / 

2012

 / 

September

  

Methodological notes


Some useful correspondences in classical magnetostatics, and the multipole representations of the magnetic potential of an ellipsoid


Moscow State Mining University, Leninskii 6, Moscow, 119991, Russian Federation

It is shown that for a given geometric body, the Ferrers theorem not only relates the potentials of volume- and surface-distributed scalar (charge or mass) sources (which it is known to do) but also relates the vector (scalar) magnetic field potentials produced by the volume- and surface-distributed densities of a stationary current (i.e., vector sources). For a body with a given magnetization, the magnetic multipole moments calculated from expressions for polarization magnetic charges are shown to be equal to those of AmpÉre currents. Using these results and noting the universality of the multipole expressions, multipole representations of the scalar magnetic potential of an ellipsoid can be (and, indeed, have been) obtained rather straightforwardly.

Fulltext pdf (523 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0182.201209d.0987
PACS: 41.20.Cv, 41.20.Gz (all)
DOI: 10.3367/UFNe.0182.201209d.0987
URL: https://ufn.ru/en/articles/2012/9/c/
000312382200003
2-s2.0-84872100326
Citation: Muratov R Z "Some useful correspondences in classical magnetostatics, and the multipole representations of the magnetic potential of an ellipsoid" Phys. Usp. 55 919–928 (2012)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 21st, March 2011, 8th, June 2011

Оригинал: Муратов Р З «О некоторых полезных соответствиях в классической магнитостатике и o мультипольных представлениях магнитного потенциала эллипсоида» УФН 182 987–997 (2012); DOI: 10.3367/UFNr.0182.201209d.0987

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions