Issues

 / 

2012

 / 

February

  

Methodological notes


Scattering phases for particles with nonzero orbital momenta and resonance regimes in the Pais approximation

,
Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

The functional Pais equation for scattering phases with nonzero orbital momenta is solved in the case of low-energy particles. For short-range screened potentials, in particular, Yukawa or Thomas — Fermi potentials, the Pais equation is shown to reduce to transcendental equations. For the potentials varying $\sim r^{- n}$, $n > 0$, simple algebraic equations are obtained for determining the phases $\delta_l$, $l\ne 0$. Possible applications of the Pais approximation to the problem of finding resonance regimes in the scattering of low-energy particles with nonzero orbital momenta are discussed.

Fulltext pdf (203 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0182.201202e.0173
PACS: 03.65.Nk, 21.45.Bc, 34.50.Cx (all)
DOI: 10.3367/UFNe.0182.201202e.0173
URL: https://ufn.ru/en/articles/2012/2/d/
000304186400004
2-s2.0-84862082402
2012PhyU...55..161B
Citation: Bruk Yu M, Voloshchuk A N "Scattering phases for particles with nonzero orbital momenta and resonance regimes in the Pais approximation" Phys. Usp. 55 161–168 (2012)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 18th, March 2011, revised: 16th, May 2011, 8th, June 2011

Оригинал: Брук Ю М, Волощук А Н «Фазы рассеяния частиц с ненулевыми орбитальными моментами и резонансные ситуации в приближении Пайса» УФН 182 173–180 (2012); DOI: 10.3367/UFNr.0182.201202e.0173

References (15) ↓ Cited by (5) Similar articles (14)

  1. Landau L D, Lifshits E M Kvantovaya Mekhanika. Nerelyativistskaya Teoriya (M.: Fizmatlit, 1974); Landau L D, Lifshitz E M Quantum Mechanics. Non-Relativistic Theory (Oxford: Pergamon Press, 1977)
  2. Mrozan E, Lehmann G Ergebnisse In Der Elektronentheorie Der Metalle (Eds P Ziesche, G Lehmann) (Berlin: Akademie-Verlag, 1983), Ch. 11; Mrozan E, Lemann G Dostizheniya Elektronnoi Teorii Metallov Vol. 2 (Pod red. P Tsishe, G Lemanna) (M.: Mir, 1984), Gl. 11
  3. Bruk Yu M Teor. Mat. Fiz. 66 392 (1986); Bruk Yu M Theor. Math. Phys. 66 260 (1986)
  4. Pais A Proc. Camb. Philos. Soc. 42 45 (1946)
  5. Romo W J, Valluri S R J. Phys. B At. Mol. Opt. Phys. 23 4223 (1990)
  6. Titts T Zh. Eksp. Teor. Fiz. 37 294 (1959); Tietz T Sov. Phys. JETP 9 207 (1960)
  7. Tietz T Acta Phys. Acad. Sci. Hung. 16 1 (1963)
  8. Wu T, Ohmura T Quantum Theory Of Scattering (Englewood Cliffs, N.J.: Prentice-Hall, 1962); Vu T Yu, Omura T Kvantovaya Teoriya Rasseyaniya (M.: Nauka, 1969)
  9. Watson G N A Treatise On The Theory Of Bessel Functions (Cambridge: The Univ. Press, 1945); Vatson G Teoriya Besselevykh Funktsii (M.: IL, 1949)
  10. Kuznetsov D S Spetsial’nye Funktsii (M.: Vysshaya shkola, 1965)
  11. Holzwarth N A W J. Math. Phys. 14 191 (1973)
  12. Ishkhanov B S, Kapitonov I M, Yudin N P Chastitsy i Atomnye Yadra (M.: LKI, 2007)
  13. Landau L D, Lifshits E M Statisticheskaya Fizika (M.: Nauka, 1964), § 57; Landau L D, Lifshitz E M Statistical Physics (Oxford: Pergamon Press, 1969)
  14. Romo W J, Valluri S R Phys. Scripta 71 572 (2005)
  15. Taylor J R Scattering Theory. The Quantum Theory On Nonrelativistic Collisions (New York: Wiley, 1972); Teilor Dzh Teoriya Rasseyaniya. Kvantovaya Teoriya Nerelyativistskikh Stolknovenii (M.: Mir, 1975), Gl. 13

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions