Issues

 / 

2011

 / 

July

  

Conferences and symposia


Econophysics and the fractal analysis of financial time series

 a, b,  a, b
a INTRAST Company, ul. Aleksandra Solzhenitsyna 36, build. 1, Moscow, 109004, Russian Federation
b Moscow State Engineering Physics Institute (State University), Kashirskoe shosse 31, Moscow, 115409, Russian Federation

Econophysics and evolutionary economics (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 2 November 2010).
Dedicated to the memory of Benoit Mandelbrot (20.11.1924–14.10.2010).

Fulltext pdf (179 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0181.201107k.0779
PACS: 05.40.−a, 05.45.Df, 89.65.Gh (all)
DOI: 10.3367/UFNe.0181.201107k.0779
URL: https://ufn.ru/en/articles/2011/7/j/
000296148400009
2-s2.0-80054729084
2011PhyU...54..754D
Citation: Dubovikov M M, Starchenko N V "Econophysics and the fractal analysis of financial time series" Phys. Usp. 54 754–761 (2011)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

2nd, November 2010

Оригинал: Дубовиков М М, Старченко Н В «Эконофизика и фрактальный анализ финансовых временных рядов» УФН 181 779–786 (2011); DOI: 10.3367/UFNr.0181.201107k.0779

References (24) ↓ Cited by (8) Similar articles (20)

  1. Mantegna R N, Stanley H E Nature 376 46 (1995)
  2. Mandelbrot B J. Business 36 394 (1963)
  3. Mandelbrot B B The Fractal Geometry Of Nature (San Francisco: W.H. Freeman, 1982)
  4. Mandelbrot B Les Objets Fractals (Paris: Flammarion, 1975); Mandelbrot B Fractals (San Francisco: W.H. Freeman, 1977)
  5. Hausdorff F Math. Ann. 79 157 (1919)
  6. Malinetskii G G, Potapov A B, Podlazov A V Nelineinaya Dinamika. Podkhody, Rezul’taty, Nadezhdy (M.: URSS, 2006)
  7. Aleksandrov P S, Pasynkov B A Vvedenie v Teoriyu Razmernosti (M.: Nauka, 1973)
  8. Brown J et al. Working Papers in Economics 08/13 (Christchurch, New Zealand: Univ. of Canterbury, Department of Economics and Finance, 2008)
  9. Clegg R Int. J. Simulation: Syst., Sci. Technol. 7 (2) 3 (2006)
  10. Mishura Y Stochastic Calculus For Fractional Brownian Motion And Related Processes (New York: Springer, 2007)
  11. Brodu N nlin/0511041
  12. Kantz H, Schreiber T Nonlinear Time Series Analysis (Cambridge: Cambridge Univ. Press, 1997)
  13. Abarbanel H D I Analysis Of Observed Chaotic Data (New York: Springer, 1996)
  14. Peters E E Fractal Market Analysis: Applying Chaos Theory To Investment And Economics (New York: J. Wiley, 1994); Peters E Fraktal’nyi Analiz Finansovykh Rynkov: Primenenie Teorii Khaosa v Investitsiyakh i Ekonomike (M.: Internet-treiding, 2004)
  15. Peters E E Chaos And Order In The Capital Markets (New York: Wiley, 1996); Peters E Khaos i Poryadok na Rynkakh Kapitala (M.: Mir, 2000)
  16. Dubovikov M M, Starchenko N S, Dubovikov M S Physica A 339 591 (2004)
  17. Bachelier L The Random Character Of Stock Market Prices (Ed. P H Cootner) (Cambridge, Mass.: M.I.T. Press, 1964) p. 17
  18. Kendall M G J. R. Statistical Soc. 96 11 (1953)
  19. Samuelson P A Industrial Management Rev. 6 13 (1965)
  20. Shiryaev A N Osnovy Stokhasticheskoi Finansovoi Matematiki Vol. 1 (M.: Fazis, 1998)
  21. Mandelbrot B B, Van Ness J W SIAM Rev. 10 422 (1968)
  22. Shiryaev A N Teoriya Veroyatnostei Ee Primeneniya 39 5 (1994); Shiryaev A N Theor. Probab. Appl. 39 (1) 1 (1994)
  23. Shiryaev A N Obozrenie Priklad. Promysh. Mat. 1 780 (1994)
  24. Polterovich V M Ekonomicheskaya Nauka Sovremennoi Rossii (1) 46 (1998)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions