Issues

 / 

2010

 / 

December

  

Methodological notes


Vibrational analogue of nonadiabatic Landau — Zener tunneling and a possibility for the creation of a new type of energy trap

 a, ,  b
a Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, ul. Kosygina, 4, Moscow, 119991, Russian Federation
b Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

The problem of irreversible targeted energy transfer is approached in a new way using the analogy between a system of two weakly coupled parametric pendulums or oscillators and nonadiabatic Landau — Zener tunneling in a two-state quantum system. This analogy predicts that efficient irreversible transfer of vibrational energy is possible between two subsystems if the frequency of at least one of them changes adiabatically slowly with time, thus allowing an internal resonance to occur between them. We also show that evolution equations for the transition of the Landau — Zener tunneling type give a quantitative prediction for the part of the initially imparted energy that is retained asymptotically in the protected classical system. The findings made can be used for designing new types of energy traps for the dynamical protection of various mechanical systems.

Fulltext pdf (270 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0180.201012f.1331
PACS: 62.25.Fg, 62.25.Jk, 63.20.Ry, 82.20.Rp (all)
DOI: 10.3367/UFNe.0180.201012f.1331
URL: https://ufn.ru/en/articles/2010/12/e/
000288495700005
2-s2.0-79955610097
Citation: Kosevich Yu A, Manevitch L I, Manevitch E L "Vibrational analogue of nonadiabatic Landau — Zener tunneling and a possibility for the creation of a new type of energy trap" Phys. Usp. 53 1281–1286 (2010)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Косевич Ю А, Маневич Л И, Маневич Э Л «Колебательный аналог неадиабатического туннелирования Ландау — Зинера и возможность создания энергетических ловушек нового типа» УФН 180 1331–1336 (2010); DOI: 10.3367/UFNr.0180.201012f.1331

References (48) Cited by (22) ↓ Similar articles (20)

  1. Vakakis A F CISM International Centre For Mechanical Sciences Vol. Exploiting the Use of Strong Nonlinearity in Dynamics and AcousticsInducing Intentional Strong Nonlinearity in Acoustics613 Chapter 1 (2024) p. 1
  2. Vakakis A F, Gendelman O V et al Nonlinear Dyn 108 711 (2022)
  3. Kanj A, Wang C et al 11 (6) (2021)
  4. Wang C, Kanj A et al 129 (9) (2021)
  5. Wang Ch, Kanj A et al Phys. Rev. Applied 14 (3) (2020)
  6. Kovaleva M, Kosevich Yu et al Communications In Nonlinear Science And Numerical Simulation 74 138 (2019)
  7. Manevitch L I Advanced Structured Materials Vol. Problems of Nonlinear Mechanics and Physics of MaterialsWave-Particle Duality and Quantum-Classical Analogy94 Chapter 16 (2019) p. 273
  8. Kosevich Yu A Advanced Structured Materials Vol. Problems of Nonlinear Mechanics and Physics of MaterialsPhase Dynamics of Intrinsic Localized Modes in Two Weakly Coupled Nonlinear Chains and Correspondence Between Periodic Tunneling of Classical and Quantum Objects94 Chapter 4 (2019) p. 39
  9. Manevitch L I, Kovaleva A et al Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures Foundations Of Engineering Mechanics Chapter 11 (2018) p. 293
  10. Kosevich Yu A 44 671 (2018)
  11. Manevitch L I, Kovaleva A et al Nonstationary Resonant Dynamics of Oscillatory Chains and Nanostructures Foundations Of Engineering Mechanics Chapter 13 (2018) p. 337
  12. Aslanyan L S J. Contemp. Phys. 52 201 (2017)
  13. Kosevich Yu A J. Micromech. Mol. Phys. 01 1650007 (2016)
  14. Vulfson I I Advances in Mechanical Engineering Lecture Notes In Mechanical Engineering Chapter 14 (2015) p. 117
  15. Zhang Y, Moore K J et al 118 (23) (2015)
  16. Manevitch L, Kovaleva A Phys. Rev. E 87 (2) (2013)
  17. Applications of Contact Geometry and Topology in Physics (2013) p. 277
  18. Hasan M A, Starosvetsky Y et al Physica D: Nonlinear Phenomena 252 46 (2013)
  19. Vulfson I I J. Mach. Manuf. Reliab. 42 261 (2013)
  20. Briggs J S, Eisfeld A Phys. Rev. A 88 (6) (2013)
  21. Kovaleva A, Manevitch L I Phys. Rev. E 85 (1) (2012)
  22. Kovaleva A, Manevitch L I, Kosevich Yu A Phys. Rev. E 83 (2) (2011)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions