Issues

 / 

2010

 / 

January

  

Reviews of topical problems


Nonlinear aspects of quantum plasma physics

 a, b, c, d, e,  e
a Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, Bochum, Germany
b Scottish Universities Physics Alliance (SUPA), Department of Physics, University of Strathclyde, Glasgow, United Kingdom
c Instituto de Plasmas e Fusao Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa, Portugal
d Department of Physics, Umeå University, Umeå, Sweden
e The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy

Dense quantum plasmas are ubiquitous in planetary interiors and in compact astrophysical objects (e.g., the interior of white dwarf stars, in magnetars, etc.), in semiconductors and micromechanical systems, as well as in the next-generation intense laser — solid density plasma interaction experiments and in quantum X-ray free-electron lasers. In contrast to classical plasmas, quantum plasmas have extremely high plasma number densities and low temperatures. Quantum plasmas are composed of electrons, positrons and holes, which are degenerate. Positrons (holes) have the same (slightly different) mass as electrons, but opposite charge. The degenerate charged particles (electrons, positrons, and holes) obey the Fermi — Dirac statistics. In quantum plasmas, there are new forces associated with (i) quantum statistical electron and positron pressures, (ii) electron and positron tunneling through the Bohm potential, and (iii) electron and positron angular momentum spin. Inclusion of these quantum forces allows the existence of very high-frequency dispersive electrostatic and electromagnetic waves (e.g., in the hard X-ray and gamma-ray regimes) with extremely short wavelengths. In this review paper, we present theoretical backgrounds for some important nonlinear aspects of wave — wave and wave — electron interactions in dense quantum plasmas. Specifically, we focus on nonlinear electrostatic electron and ion plasma waves, novel aspects of three-dimensional quantum electron fluid turbulence, as well as nonlinearly coupled intense electromagnetic waves and localized plasma wave structures. Also discussed are the phase-space kinetic structures and mechanisms that can generate quasistationary magnetic fields in dense quantum plasmas. The influence of the external magnetic field and the electron angular momentum spin on the electromagnetic wave dynamics is discussed. Finally, future perspectives of the nonlinear quantum plasma physics are highlighted.

Fulltext pdf (1.6 MB)
Fulltext is also available at DOI: 10.3367/UFNe.0180.201001b.0055
PACS: 05.30.Fk, 52.35.Mw, 52.35.Ra, 52.35.Sb (all)
DOI: 10.3367/UFNe.0180.201001b.0055
URL: https://ufn.ru/en/articles/2010/1/b/
000278717900002
2-s2.0-77954764766
2010PhyU...53...51S
Citation: Shukla P K, Eliasson B "Nonlinear aspects of quantum plasma physics" Phys. Usp. 53 51–76 (2010)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Шукла П К, Элиассон Б «Нелинейные аспекты квантовой физики плазмы» УФН 180 55–82 (2010); DOI: 10.3367/UFNr.0180.201001b.0055

References (220) Cited by (466) Similar articles (20) ↓

  1. S.A. Akhmanov, A.P. Sukhorukov, R.V. Khokhlov “Self-focusing and diffraction of light in a Nonlinear mediumSov. Phys. Usp. 10 609–636 (1968)
  2. Yu.L. Klimontovich, V.P. Silin “The spectra of systems of interacting particles and collective energy losses during passage of charged particles through matterSov. Phys. Usp. 3 84–114 (1960)
  3. V.N. Tsytovich “Nonlinear effects in a plasmaSov. Phys. Usp. 9 805–836 (1967)
  4. V.L. Ginzburg, A.V. Gurevich “Nonlinear phenomena in a Plasma located in an alternating electromagnetic fieldSov. Phys. Usp. 3 115–146 (1960)
  5. V.I. Tatarskii “The Wigner representation of quantum mechanicsSov. Phys. Usp. 26 311–327 (1983)
  6. S.V. Bulanov, T.Zh. Esirkepov et alRelativistic mirrors in plasmas — novel results and perspectivesPhys. Usp. 56 429–464 (2013)
  7. V.D. Gorobchenko, E.G. Maksimov “The dielectric constant of an interacting electron gasSov. Phys. Usp. 23 35–58 (1980)
  8. V.E. Fortov, D.H.H. Hoffmann, B.Yu. Sharkov “Intense ion beams for generating extreme states of matterPhys. Usp. 51 109–131 (2008)
  9. M.V. Kuzelev, A.A. Rukhadze “Spontaneous and stimulated emission induced by an electron, electron bunch, and electron beam in a plasmaPhys. Usp. 51 989–1018 (2008)
  10. I.N. Kosarev “Kinetic theory of plasmas and gases. Interaction of high-intensity laser pulses with plasmasPhys. Usp. 49 1239–1252 (2006)
  11. A.Yu. Potekhin “The physics of neutron starsPhys. Usp. 53 1235–1256 (2010)
  12. D.A. Kirzhnits “General properties of electromagnetic response functionsSov. Phys. Usp. 30 575–587 (1987)
  13. V.E. Fortov, A.G. Khrapak et alDusty plasmasPhys. Usp. 47 447–492 (2004)
  14. A.V. Korzhimanov, A.A. Gonoskov et alHorizons of petawatt laser technologyPhys. Usp. 54 9–28 (2011)
  15. L.M. Gorbunov “Hydrodynamics of plasma in a strong high-frequency fieldSov. Phys. Usp. 16 217–235 (1973)
  16. V.P. Silin “Anomalous nonlinear dissipation of high-frequency radio waves in plasmaSov. Phys. Usp. 15 742–758 (1973)
  17. A.A. Chernyshov, K.V. Karelsky, A.S. Petrosyan “Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmasPhys. Usp. 57 421–452 (2014)
  18. V.N. Tsytovich “Statistical acceleration of particles in a turbulent plasmaSov. Phys. Usp. 9 370–404 (1966)
  19. A.S. Davydov “Solitons in quasi-one-dimensional molecular structuresSov. Phys. Usp. 25 898–918 (1982)
  20. V.E. Zakharov, E.A. Kuznetsov “Solitons and collapses: two evolution scenarios of nonlinear wave systemsPhys. Usp. 55 535–556 (2012)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions