Issues

 / 

2009

 / 

July

  

From the current literature


Positronium in a cavity in a high-Tc superconductor


Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

The behavior of positronium localized in a microvoid in a high-temperature superconductor (HTSC) environment is examined. The interaction of such a positronium with conduction electrons is treated as arising from the Ps ↔ e+ + e- process, which is mathematically described here in terms of the well-known Anderson model for a magnetic impurity in a normal metal. In this model, the interaction underlying this process is due to the positronium state hybridization with the states of conduction electrons and the state of the positronium remaining within the void. Similarly to the case of a magnetic impurity, the density of states of an interacting positronium exhibits a ’Kondo resonance’ if the Fermi liquid surrounding the void is in the normal state. Based on experimental data on the lifetime τ2 of void-trapped positrons, it is concluded that the hybridization interaction is much stronger than the intra-atomic relativistic electron — positron interaction in the Ps atom. The model used to describe the interacting Ps atom provides a relation between the experimental values of τ2(T) and the properties of the electronic structure of the metal. Experimental results for ceramic HTSC samples of (Bi, Pb)2Sr2Ca2Cu3O7 and (Bi, Pb)-2223 are interpreted, which show a sharp decrease in τ2(T) at T = Tc, where Tc is the superconducting transition temperature. Using the adopted model, some conclusions are drawn as to how the properties of the pseudogap correlate with the experimental τ2(T) dependence observed in (Bi,Pb)-2223 for T > Tc.

Fulltext pdf (224 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0179.200907b.0727
PACS: 71.60.+z, 74.25.Jb, 74.72.−h, 78.70.Bj (all)
DOI: 10.3367/UFNe.0179.200907b.0727
URL: https://ufn.ru/en/articles/2009/7/b/
000272512700002
2-s2.0-70449553413
2009PhyU...52..687S
Citation: Sedov V L "Positronium in a cavity in a high-Tc superconductor" Phys. Usp. 52 687–694 (2009)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Седов В Л «Позитроний в микрополости в высокотемпературном сверхпроводнике» УФН 179 727–736 (2009); DOI: 10.3367/UFNr.0179.200907b.0727

References (115) ↓ Similar articles (16)

  1. Grafutin V I, Prokop’ev E P Usp. Fiz. Nauk 172 67 (2002); Grafutin V I, Prokop’ev E P Phys. Usp. 45 59 (2002)
  2. Gol’danskii V I Fizicheskaya Khimiya Pozitrona i Pozitroniya (M.: Nauka, 1968)
  3. Sedov V L Usp. Fiz. Nauk 94 417 (1968); Sedov V L Sov. Phys. Usp. 11 163 (1968)
  4. Hautojarvi P (Ed.) Positrons In Solids (Topics In Current Physics, Vol. 12) (Berlin: Springer-Verlag, 1979)
  5. Brandt W, Dupasquier A (Eds) Positron Solid-State Physics (Amsterdam: North-Holland, 1983)
  6. Puska M J, Nieminen R M Rev. Mod. Phys. 66 841 (1994)
  7. Schultz P J, Lynn K G Rev. Mod. Phys. 60 701 (1988)
  8. Sedov V L, Tsigelnik O A Phys. Lett. A 332 423 (2004)
  9. Consolati G J. Chem. Phys. 117 7279 (2002)
  10. Stepanov S V, Byakov V M, Kobayashi Y Phys. Rev. B 72 054205 (2005)
  11. He S et al. J. Chem. Phys. 122 214907 (2005)
  12. Fischer C G et al. Phys. Rev. B 71 180102 (2005)
  13. Sato K et al. Phys. Rev. Lett. 96 228302 (2006)
  14. Anderson P W Phys. Rev. 124 41 (1961)
  15. Bickers N E, Cox D L,Wilkins J W Phys. Rev. B 36 2036 (1987)
  16. Berestetskii V B, Lifshits E M, Pitaevskii L P Kvantovaya Elektrodinamika (M.: Fizmatlit, 2006); Berestetskii V B, Lifshitz E M, Pitaevskii L P Quantum Electrodynamics (Oxford: Butterworth-Heinemann, 1999)
  17. Peskin M E, Schroeder D V An Introduction To Quantum Field Theory (Reading, Mass.: Addison-Wesley Publ. Co., 1995); Peskin M, Shreder D Vvedenie v Kvantovuyu Teoriyu Polya (M. - Izhevsk: RKhD, 2001)
  18. Dirac R A M Proc. Cambr. Philos. Soc. Math. Phys. Sci. 26 361 (1930)
  19. Sedov V L, Teimurazova V A, Berndt K Phys. Lett. A 33 319 (1970)
  20. Haussmann R Z. Phys. B 91 291 (1993)
  21. Haussmann R Phys. Rev. B 49 12975 (1994)
  22. Timusk T, Statt V Rep. Prog. Phys. 62 61 (1999)
  23. Loktev V M, Quick R M, Sharapov S G Phys. Rep. 349 1 (2001)
  24. Maly J, Jankó B, Levin K Physica C 321 113 (1999)
  25. Yanase Y et al. Phys. Rep. 387 1 (2003)
  26. Damascelli A, Hussain Z, Shen Z-X Rev. Mod. Phys. 75 473 (2003)
  27. Renner Ch et al. Phys. Rev. Lett. 80 149 (1998)
  28. Perali A et al. Phys. Rev. B 66 024510 (2002)
  29. Stajic J et al. Phys. Rev. B 68 024520 (2003)
  30. Wen H-H et al. Phys. Rev. B 72 134507 (2005)
  31. Sadovskii M V Physica C 341 - 348 939 (2000)
  32. Sadovskii M B Usp. Fiz. Nauk 171 539 (2001); Sadovskii M V Phys. Usp. 44 515 (2001)
  33. Pereg-Varnea T, Franz M Phys. Rev. B 68 180506 (2003)
  34. Abrikosov A A Phys. Rev. B 74 180505(R) (2006)
  35. Deutscher G Low Temp. Phys. 32 566 (2006)
  36. Yang K-Y, Rice T M, Zhang F C Phys. Rev. B 73 174501 (2006)
  37. Sedov V L Izv. RAN fiz. 58 (4) 70 (1994)
  38. Usmar S G et al. Phys. Rev. B 36 8854 (1987)
  39. Jean Y C et al. Phys. Rev. B 36 3994 (1987)
  40. Sundar C S et al. Physica C 153 - 155 155 (1988)
  41. Corbel S et al. Appl. Phys. A 48 335 (1989)
  42. Ishibashi S et al. Phys. Lett. A 128 387 (1988)
  43. Teng M-K et al. Phys. Lett. A 124 363 (1987)
  44. Wang S J et al. Phys. Rev. B 37 603 (1988)
  45. Ishibashi S et al. Jpn. J. Appl. Phys. 26 L688 (1987)
  46. Smedskjaer L C et al. Physica B+C 150 56 (1988)
  47. Jingsheng Z et al. J. Phys. C 21 L281 (1988)
  48. Brusa R S et al. Physica C 156 65 (1988)
  49. von Stetten E C et al. Phys. Rev. Lett. 60 2198 (1988)
  50. Mandal P et al. J. Phys. C 21 3151 (1988)
  51. Hoffmann L et al. Europhys. Lett. 6 61 (1988)
  52. Charalambous S et al. Phys. Lett. A 128 97 (1988)
  53. Kriŝtiaková K et al. Z. Phys. B 77 197 (1989)
  54. Pujari P K et al. Physica C 159 75 (1989)
  55. Sedov V L et al. Phys. Lett. A 151 93 (1990)
  56. Sedov V L, Khafiz M A, Shabatin V P FNT 17 1558 (1991); Sedov V L, Hafiz M A, Shabatin V P Sov. J. Low Temp. Phys. 17 855 (1991)
  57. Sedov V L et al. Mater. Sci. Forum 105 - 110 1217 (1992)
  58. Sedov V L i dr. Yad. Fiz. 58 1198 (1995); Sedov V L et al. Phys. At. Nucl. 58 1121 (1995)
  59. Sedov V L et al. Phys. Lett. A 222 455 (1996)
  60. Lim H J, Byrne J G Physica B 229 294 (1997)
  61. Pujari P K et al. Solid State Commun. 73 623 (1990)
  62. Pujari P K et al. Phys. Rev. B 50 3438 (1994)
  63. Pujari P K et al. Phys. Rev. B 66 012518 (2002)
  64. Hill A J et al. Physica C 176 64 (1991)
  65. Li X H et al. Mater. Sci. Forum 105 - 110 735 (1992)
  66. Wang S J et al. Phys. Rev. B 49 4319 (1994)
  67. Wang S J et al. Physica C 235 - 240 1219 (1994)
  68. Sundar C S et al. Phys. Rev. B 43 13019 (1991)
  69. Chakrabarti M et al. Solid State Commun. 128 321 (2003)
  70. Zhang D M et al. Phys. Rev. B 47 3435 (1993)
  71. Huang H C et al. Mod. Phys. Lett. B 4 993 (1990)
  72. Sanyal D, Banerjee D, De U Phys. Rev. B 58 15226 (1998)
  73. Sanyal D et al. Physica B 281 - 282 928 (2000)
  74. De U et al. Phys. Lett. A 222 119 (1996)
  75. De U et al. Phys. Rev. B 62 14519 (2000)
  76. Kajcsos Z et al. In Positron Annihilation (Eds L Dorikens-Vanpraet, M Dorikens, B Segers) (Singapore: World Scientific, 1989) p. 889
  77. Jean Y C et al. In Positron Annihilation (Eds L Dorikens-Vanpraet, M Dorikens, B Segers) (Singapore: World Scientific, 1989) p. 922
  78. Hill A J et al. Physica C 176 64 (1991)
  79. Li X H et al. Mater. Sci. Forum 105 - 110 735 (1992)
  80. Jean Y C et al. Phys. Rev. Lett. 64 1593 (1990)
  81. Bharathi A et al. Phys. Rev. B 42 10199 (1990)
  82. Manuel A A Helv. Phys. Acta 61 451 (1988)
  83. Smedskjaer L C et al. Phys. Rev. B 37 2330 (1988)
  84. Barnes S E, Peter M Phys. Rev. B 40 10958 (1989)
  85. Benedek R, Schüttler H-B Phys. Rev. B 41 1789 (1990)
  86. Kresin V Z, Morawitz H J. Supercond. 3 227 (1990)
  87. McMullen T Phys. Rev. B 41 877 (1990)
  88. Singh D et al. Phys. Rev. B 39 9667 (1989)
  89. Arponen J et al. J. Phys. F 3 2092 (1973)
  90. Hautojärvi P et al. Philos. Mag. 35 973 (1977)
  91. Puska M J, Nieminen R M J. Phys. F 13 333 (1983)
  92. Hasegawa M et al. In Positron Annihilation (Eds P G Coleman, S C Sharma, L M Diana) (Amsterdam: North-Holland, 1982) p. 425
  93. Hasegawa M, Berko S, Kuramoto E In Positron Annihilation (Eds L Dorikens-Vanpraet, M Dorikens, D Segers) (Singapore: World Scientific, 1989) p. 73
  94. Hasegawa M et al. J. Phys. Condens. Matter 1 SA77 (1989)
  95. Hautojärvi P Hyperfine Interact. 15 357 (1983)
  96. Cotterill R M J et al. J. Phys. F 2 459 (1972)
  97. Eldrup M, Mogensen O E, Evans J H J. Phys. F 6 499 (1976)
  98. Brusa R S et al. Nucl. Instrum. Meth. Phys. Res. B 194 519 (2002)
  99. Sanyal D et al. Phys. Lett. A 204 305 (1995)
  100. Landau L D, Lifshits E M Kvantovaya Mekhanika: Nerelyativistskaya Teoriya (M.: Fizmatlit, 2004) p. 144; Landau L D, Lifshitz E M Quantum Mechanics: Non-Relativistic Theory (Oxford: Pergamon Press, 1977)
  101. Brandt W Appl. Phys. 5 1 (1974)
  102. Hodges C H, Stott M J Solid State Commun. 12 1153 (1973)
  103. Jena P, Gupta A K, Singwi K S Solid State Commun. 21 293 (1977)
  104. Gunnarsson O, Lundqvist B I Phys. Rev. B 13 4274 (1976)
  105. Kuramoto Y Z. Phys. B 53 37 (1983)
  106. Grewe N Z. Phys. B 53 271 (1983)
  107. Rupasov V I Phys. Lett. A 237 80 (1997)
  108. Ekino T, Sezaki Y, Fujii H Phys. Rev. B 60 6916 (1999)
  109. Ekino T et al. J. Low Temp. Phys. 117 359 (1999)
  110. Sen P et al. Phys. Lett. A 262 469 (1999)
  111. Sen P et al. Phys. Lett. A 302 330 (2002)
  112. Tchernyshyov O Phys. Rev. B 56 3372 (1997)
  113. Norman M R et al. Phys. Rev. B 57 11093R (1998)
  114. Kagan M Yu i dr. Usp. Fiz. Nauk 176 1105 (2006); Kagan M Yu et al. Phys. Usp. 49 1079 (2006)
  115. Sedov V L Phys. Lett. A 372 3105 (2008)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions