Oral issue of the journal Uspekhi Fizicheskikh Nauk

Modeling of gas discharge plasma

Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation

The condition for the self-maintenance of a gas discharge plasma (GDP) is derived from its ionization balance expressed in the Townsend form and may be used as a definition of a gas discharge plasma in its simplest form. The simple example of a gas discharge plasma in the positive column of a cylindrical discharge tube allows demonstrating a wide variety of possible GDP regimes, revealing a contradiction between simple models used to explain gas discharge regimes and the large number of real processes responsible for the self-maintenance of GDP. The variety of GDP processes also results in a stepwise change of plasma parameters and developing some instabilities as the voltage or discharge current is varied. As a consequence, new forms and new applications of gas discharge arise as technology progresses.

Fulltext pdf (586 KB)
video avi (49 MB)
Fulltext is also available at DOI: 10.3367/UFNe.0179.200906e.0591
PACS: 34.80.−i, 51.50.+v, 52.20.−j, 52.80.−s (all)
DOI: 10.3367/UFNe.0179.200906e.0591
Citation: Smirnov B M "Modeling of gas discharge plasma" Phys. Usp. 52 559–571 (2009)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

:    « » 179 591–604 (2009); DOI: 10.3367/UFNr.0179.200906e.0591

References (107) Cited by (21) ↓ Similar articles (3)

  1. Mathew P, Mathews S T et al Pap. Phys. 14 140004 (2022)
  2. (INTERNATIONAL CONFERENCE ON THE METHODS OF AEROPHYSICAL RESEARCH (ICMAR 2020)) Vol. INTERNATIONAL CONFERENCE ON THE METHODS OF AEROPHYSICAL RESEARCH (ICMAR 2020)A missing link of contraction of atmospheric pressure gas discharge plasmaA. E.MedvedevP. A.Pinaev2351 (2021) p. 030081
  3. Saifutdinov A I Journal Of Applied Physics 129 093302 (2021)
  4. Pyachin S A, Burkov A A et al Russ Phys J 61 2236 (2019)
  5. Medvedev A, Pinaev P, Barnyakov A (AIP Conference Proceedings) Vol. 2098 (2019) p. 020011
  6. Val’shin A M, Pershin C M, Mikheev G M Bull. Lebedev Phys. Inst. 46 191 (2019)
  7. Kurbatov P F Physics Of Fluids 31 114106 (2019)
  8. Demkin V P, Melnichuk S V, Postnikov A V Physics Of Plasmas 25 083502 (2018)
  9. Polsky Yu E, Loginov S S et al 2018Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), (2018) p. 1
  10. Medvedev A, Kabanov A M, Tarasenko V F International Conference on Atomic and Molecular Pulsed Lasers XIII, (2018) p. 56
  11. Afanas’ev V P, Smirnov B M, Zhilyaev D A High Temp 56 621 (2018)
  12. Gorbunkov V, Kositsin V V et al J. Phys.: Conf. Ser. 944 012040 (2018)
  13. Chebakova V Yu Lobachevskii J Math 38 1165 (2017)
  14. Andreev V V, Voldiner I A, Korneeva M A Plasma Phys. Rep. 43 1119 (2017)
  15. Demkin V P, Melnichuk S V et al Physics Of Plasmas 23 043509 (2016)
  16. Medvedev A E Eur. Phys. J. D 70 (2) (2016)
  17. Antonov G G, Kovshechnikov V B, Rutberg F G Tech. Phys. 61 734 (2016)
  18. Afanas’ev V P, Smirnov B M, Zhilyaev D A J. Exp. Theor. Phys. 119 138 (2014)
  19. Koç E, Karaköse S, Salamov B G Phys. Status Solidi A 210 1806 (2013)
  20. Locke B R, Lukes P, Brisset Jean‐Louis Plasma Chemistry and Catalysis in Gases and Liquids 1 (2012) p. 185
  21. Kurbatov P F AIP Advances 1 022115 (2011)

© 1918–2023 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions