Issues

 / 

2009

 / 

December

  

Methodological notes


Brusselator: an abstract chemical reaction?

 a,  b,  c
a Humboldt-Universität zu Berlin, Institut für Physik, Newtonstraße 15, Berlin, 12489, Germany
b Physics and Mathematics Faculty, Kursk State University, ul. Radishcheva 33, Kursk, 305000, Russian Federation
c Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

In this paper we consider the Brusselator and the Sel’kov model, which describes the irreversible reaction of glycolysis in the regime of self-sustained oscillations. We show that these two differently constructed models can be reduced to a single equation— a generalized Rayleigh equation. The physical basis for this generality is investigated. The advantages of this equation as a tool for qualitative and quantitative analyses, as well as the similarities and differences of the solutions realized for each of the two concrete models in the cases of almost harmonic and relaxation self-sustained oscillations, are discussed.

Fulltext pdf (363 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0179.200912h.1327
PACS: 02.30.Hq, 82.39.−k, 82.40.Bj (all)
DOI: 10.3367/UFNe.0179.200912h.1327
URL: https://ufn.ru/en/articles/2009/12/d/
000285142600003
2-s2.0-78650930573
2009PhyU...52.1239L
Citation: Lavrova A I, Postnikov E B, Romanovsky Yu M "Brusselator: an abstract chemical reaction?" Phys. Usp. 52 1239–1244 (2009)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Лаврова А И, Постников Е Б, Романовский Ю М «Брюсселятор — абстрактная химическая реакция?» УФН 179 1327–1332 (2009); DOI: 10.3367/UFNr.0179.200912h.1327

References (33) Cited by (19) ↓ Similar articles (3)

  1. Yuan Q, Wang S et al Math Methods In App Sciences (2024)
  2. Yu X Chaos, Solitons & Fractals 185 115108 (2024)
  3. Nazimuddin A K M, Kabir M H, Gani M O Mathematics And Computers In Simulation 203 577 (2023)
  4. Miwadinou C H, Olabodé D L et al Chaos, Solitons & Fractals 176 114177 (2023)
  5. Yamasaki K, Yajima T Int. J. Bifurcation Chaos 32 (02) (2022)
  6. Voronov V K Int J Theor Phys 60 924 (2021)
  7. Llibre Ja, Valls C Mathematics And Computers In Simulation 170 107 (2020)
  8. Kumar P, Gangopadhyay G Phys. Rev. E 101 (4) (2020)
  9. Deng Q, Zhou T Int. J. Bifurcation Chaos 30 2050151 (2020)
  10. Saha S, Gangopadhyay G, Shankar R D Communications In Nonlinear Science And Numerical Simulation 85 105234 (2020)
  11. Castelino Je K, Ratliff D J et al Physica D: Nonlinear Phenomena 409 132475 (2020)
  12. Saha S, Gangopadhyay G, Ray D Sh Int. J. Appl. Comput. Math 5 (2) (2019)
  13. Olabodé D L, Miwadinou C H et al Phys. Scr. 93 085203 (2018)
  14. Saha S, Gangopadhyay G J Math Chem 55 887 (2017)
  15. Romanovsky Yu M, Trifonenkov V P Uspekhi Fizicheskikh Nauk 186 125 (2016)
  16. Verveyko D V, Verisokin A Yu Applied Mathematical Modelling 38 4796 (2014)
  17. Ghosh Sh, Ray D Sh Eur. Phys. J. B 87 (3) (2014)
  18. Ghosh Sh, Ray D Sh 139 (16) (2013)
  19. Postnikov E B, Verveyko D V, Verisokin A Yu Phys. Rev. E 83 (6) (2011)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions