Issues

 / 

2007

 / 

December

  

Methodological notes


Did Maxwell know about the percolation threshold? (on the fiftieth anniversary îf percolation theory)


National Technical University of Ukraine ‘Kyiv Polytechnical Institute’, Peremogy prosp. 37, Kiev, 03056, Ukraine

À new approximatioï obtained in terms îf the Ìàõwell approach is proposed for the effective conductivity îf à macroscopically disordered medium. In contrast to the standard Maxwell approximation, this approximation is valid over à much wider concentration range and ñàn qualitatively describe the presence îf the percolation threshold. Òhå relation îf the proposed approximation to the Padé approximant îf the standard Maxwell approximation is also discussed.

Fulltext pdf (118 KB)
Fulltext is also available at DOI: 10.1070/PU2007v050n12ABEH006348
PACS: 01.55+b, 01.65.+g, 05.60.Cd, 72.80.Tm (all)
DOI: 10.1070/PU2007v050n12ABEH006348
URL: https://ufn.ru/en/articles/2007/12/c/
000254795400003
2-s2.0-41849098910
2007PhyU...50.1239S
Citation: Snarskii A A "Did Maxwell know about the percolation threshold? (on the fiftieth anniversary îf percolation theory)" Phys. Usp. 50 1239–1242 (2007)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Îðèãèíàë: Ñíàðñêèé À À «Çíàë ëè Ìàêñâåëë î ïîðîãå ïðîòåêàíèÿ? (Ê ïÿòèäåñÿòèëåòèþ ñîçäàíèÿ òåîðèè ïðîòåêàíèÿ)» ÓÔÍ 177 1341–1344 (2007); DOI: 10.3367/UFNr.0177.200712g.1341

References (18) Cited by (17) ↓ Similar articles (20)

  1. MARTYNIUK Galyna, AKSIMENTYEVA-KRASNOPOLSKA Olena Proc. Shevchenko Sci. Soc. Chem. Sci. 2023 86 (2023)
  2. Tsepelev V, Chikova O, Shmakova K Metall Mater Trans B 53 3825 (2022)
  3. Chikova O A, Sinitsin N I, V’yukhin V V Russ Phys J 64 1039 (2021)
  4. Davidovich M V J. Exp. Theor. Phys. 132 159 (2021)
  5. Kalamkarov A, Andrianov I, Starushenko G J. Multiscale Modelling 11 (01) (2020)
  6. Davidovich M V Phys.-Usp. 62 1173 (2019)
  7. Nanosist. Nanomater. Nanotehnol. 17 (4) (2019)
  8. Andrianov I V, Awrejcewicz Ja, Danishevskyy V V Advanced Structured Materials Vol. Asymptotical Mechanics of CompositesModels of Composite Materials and Mathematical Methods of Their Investigation77 Chapter 2 (2018) p. 21
  9. Andrianov I V, Starushenko G A, Gabrinets V A Advanced Structured Materials Vol. Advances in Mechanics of Microstructured Media and StructuresPercolation Threshold for Elastic Problems: Self-consistent Approach and Padé Approximants87 Chapter 3 (2018) p. 35
  10. Tarasevich Yu Yu, Laptev V V et al Physica A: Statistical Mechanics And Its Applications 477 195 (2017)
  11. Snarskii A A, Bezsudnov I V et al Transport Processes in Macroscopically Disordered Media Chapter 3 (2016) p. 15
  12. Tarasevich Yu Yu, Goltseva V A et al Phys. Rev. E 94 (4) (2016)
  13. Andrianov I V, Awrejcewicz Ja, Starushenko G A Int. J. Appl. Mechanics 07 1550025 (2015)
  14. Kalamkarov A L, Andrianov I V, Starushenko G A International Journal Of Engineering Science 78 154 (2014)
  15. Milkin S S, Starodubov A V, Venig S B Tech. Phys. Lett. 40 860 (2014)
  16. Milkin S S, Starodubov A V et al 2014 24th International Crimean Conference Microwave & Telecommunication Technology, (2014) p. 968
  17. Andrianov I V, Danishevs’kyy V V, Kalamkarov A L Composites Part B: Engineering 41 503 (2010)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions