Issues

 / 

2007

 / 

January

  

Reviews of topical problems


Tunneling of electromagnetic waves: paradoxes and prospects

 a, b
a Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation
b Space Research Institute, Russian Academy of Sciences, Profsoyuznaya str. 84/32, Moscow, 117997, Russian Federation

Electromagnetic wave tunneling through a photonic barrier and the phenomenon of frustrated total internal reflection (FTIR) are considered for different spectral wavelength ranges. It is found that in a dielectric gradient barrier nonlocal dispersion occurs, whose cutoff frequency is formed by, and dependent on the shape and geometry of, the dielectric constant profile ε(z), and which is shown to be key to wave tunneling through gradient media. Particular attention is given to total transmittance below the cutoff frequency in the FTIR (reflectionless tunneling) regime typical of gradient media. Exact analytical solutions of Maxwell’s equations for tunneling effects in heterogeneous transparent dielectrics are used to demonstrate that these phenomena are common for a wide range of wavelengths. Theoretical controversies over FTIR are reviewed and perspectives on the use of gradient photonic barriers in thin layer filters and polarizers, high efficiency reflectors, and reflection free coatings are discussed.

Fulltext pdf (295 KB)
Fulltext is also available at DOI: 10.1070/PU2007v050n01ABEH006148
PACS: 03.65.Ge, 03.65.Sq, 42.25.Bs, 42.25.Gy (all)
DOI: 10.1070/PU2007v050n01ABEH006148
URL: https://ufn.ru/en/articles/2007/1/b/
000246449500002
2-s2.0-34249666687
2007PhyU...50...37S
Citation: Shvartsburg A B "Tunneling of electromagnetic waves: paradoxes and prospects" Phys. Usp. 50 37–51 (2007)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Шварцбург А Б «Туннелирование электромагнитных волн — парадоксы и перспективы» УФН 177 43–58 (2007); DOI: 10.3367/UFNr.0177.200701b.0043

References (86) ↓ Cited by (56) Similar articles (20)

  1. Gamow G Z. Phys. 51 204 (1928)
  2. Condon E U, Morse P M Rev. Mod. Phys. 3 43 (1931)
  3. MacColl L A Phys. Rev. 40 621 (1932)
  4. Wigner E P Phys. Rev. 98 145 (1955)
  5. Hartman T E J. Appl. Phys. 33 3427 (1962)
  6. Hauge E H, Støvneng J A Rev. Mod. Phys. 61 917 (1989)
  7. Chiao R Y, Steinberg A M In Progress In Optics Vol. 44 (Ed. E Wolf) (Amsterdam: Elsevier, 2002) p. 143
  8. Muga J G, Leavens C R Phys. Rep. 338 353 (2000)
  9. de Fornel F Evanescent Waves: From Newtonian Optics To Atomic Optics (Springer Ser. in Opt. Sci., Vol. 73) (Berlin: Springer, 2001)
  10. Winful H G Phys. Rev. Lett. 90 023901 (2003)
  11. Büttiker M, Washburn S Nature 422 271 (2003)
  12. Olkhovsky V S, Recami E, Jakiel J Phys. Rep. 398 133 (2004)
  13. Enders A, Nimtz G J. Phys. (France) I 2 1693 (1992)
  14. Nimtz G, Enders A, Spieker H J. Phys. (France) I 4 565 (1994)
  15. Brodowsky H M, Heitmann W, Nimtz G Phys. Lett. A 222 125 (1996)
  16. Ranfagni A et al. Phys. Rev. E 48 1453 (1993)
  17. Mugnai D, Ranfagni A, Ronchi L Phys. Lett. A 247 281 (1998)
  18. Steinberg A M, Kwiat P G, Chiao R Y Phys. Rev. Lett. 71 708 (1993)
  19. Laude V, Tournois P J. Opt. Soc. Am. B 16 194 (1999)
  20. Feynman R P, Hibbs A R Quantum Mechanics And Path Integrals (New York: McGraw-Hill, 1965)
  21. Büttiker M Phys. Rev. B 27 6178 (1983)
  22. Büttiker M, Landauer R J. Phys. C 21 6207 (1988)
  23. Ranfagni A et al. Appl. Phys. Lett. 58 774 (1991)
  24. DeWitt-Morette C, Foong S K Phys. Rev. Lett. 62 2201 (1989)
  25. Ranfagni A et al. Phys. Rev. E 63 025102 (2001)
  26. Gaveau B et al. Phys. Rev. Lett. 53 419 (1984)
  27. Olkhovsky V S, Recami E, Salesi G Europhys. Lett. 57 879 (2002)
  28. Longhi S et al. Phys. Rev. E 65 046610 (2002)
  29. Nimtz G, Heitmann W Prog. Quantum Electron. 21 81 (1997)
  30. Chiao R Y Phys. Rev. A 48 R34 (1993)
  31. Chiao R Y et al. Quantum Semiclass. Opt. 7 279 (1995)
  32. Aharonov Y, Erez N, Reznik B Phys. Rev. A 65 052124 (2002)
  33. Azbel’ M Ya Solid State Commun. 91 439 (1994)
  34. Shaarawi A M, Besieris I M J. Phys. A 33 7255 (2000)
  35. Ziolkowski R W Phys. Rev. E 63 046604 (2001)
  36. Milonni P W J. Phys. B 35 R31 (2002)
  37. Moritz E Mol. Cryst. Liquid Cryst. 41 63 (1977)
  38. Musielak Z E, Fontenla J M, Moore R L Phys. Fluids B 4 13 (1992)
  39. Xu K, Zheng X, She W Appl. Phys. Lett. 85 6089 (2004)
  40. Krekora P, Su Q, Grobe R Phys. Rev. A 63 032107 (2001)
  41. Pendry J B Phys. Rev. Lett. 85 3966 (2000)
  42. Greisukh G I, Bobrov S T, Stepanov S A Optics Of Diffractive And Gradient-Index Elements And Systems (Bellingham, Wash.: SPIE Opt. Eng. Press, 1997)
  43. Yeh P Optical Waves In Layered Media (New York: Wiley, 1988)
  44. Heavens O S Optical Properties Of Thin Solid Films (New York: Dover Publ., 1991)
  45. Lee S-J et al. Appl. Phys. Lett. 82 2133 (2003)
  46. Grigorenko A N et al. Nature 438 335 (2005)
  47. Ginzburg V L Zh. Eksp. Teor. Fiz. 34 1593 (1958)
  48. Shvartsburg A B, Petite G Eur. Phys. J. D 36 111 (2005)
  49. Haibel A, Nimtz G, Stahlhofen A A Phys. Rev. E 63 047601 (2001)
  50. Li C-F, Wang Q J. Opt. Soc. Am. B 18 1174 (2001)
  51. Griffiths D J Introduction To Electrodynamics (Upper Saddle River, NJ: Prentice Hill, 1999)
  52. Lee B, Lee W J. Opt. Soc. Am. B 14 777 (1997)
  53. Petrillo V, Refaldi L Opt. Commun. 186 35 (2000)
  54. Muga J G et al. Phys. Rev. A 66 042115 (2002)
  55. Longhi S Phys. Rev. E 64 037601 (2001)
  56. Chiao R Y, Kozhekin A E, Kurizki G Phys. Rev. Lett. 77 1254 (1996)
  57. Wang L J, Kuzmich A, Dogariu A Nature 406 277 (2000)
  58. Balcou Ph, Dutriaux L Phys. Rev. Lett. 78 851 (1997)
  59. Shvartsburg A, Petite G In Progress In Optics Vol. 44 (Ed. E Wolf) (Amsterdam: Elsevier, 2002) p. 123
  60. Shvartsburg A B, Petite G Opt. Lett. 31 1127 (2006)
  61. Ranfagni A et al. Phys. Scripta 42 508 (1990)
  62. Martin Th, Landauer R Phys. Rev. A 45 2611 (1992)
  63. Landau L D, Lifshits E M Kvantovaya Mekhanika: Nerelyativistskaya Teoriya (M.: Fizmatlit, 2001)
  64. Baena J D et al. Phys. Rev. B 72 075116 (2005)
  65. Landau L D, Lifshits E M Elektrodinamika Sploshnykh Sred (M.: Nauka, 1992)
  66. Cronin-Golomb M Opt. Lett. 20 2075 (1995)
  67. Youfa W, Qi W, Jiashan B J. Appl. Phys. 84 6233 (1998)
  68. Raether H Surface Plasmons On Smooth And Rough Surfaces And On Gratings (Springer Tracts in Modern Physics, Vol. 111) (Berlin: Springer-Verlag, 1988)
  69. Shvartsburg A, Petite G, Auby N J. Opt. Soc. Am. B 16 966 (1999)
  70. Otto A Z. Phys. 216 398 (1968)
  71. Kretschmann E Z. Phys. 241 313 (1971)
  72. Shvartsburg A In Nonlinear Waves: Classical And Quantum Aspects (NATO Sci. Ser., Ser. II, Vol. 153, Eds F Kh Abdullaev, V V Konotop) (Dordrecht: Kluwer Acad. Publ., 2004) p. 389
  73. Macleod H A Thin-Film Optical Filters 3rd ed. (Bristol: Institute of Physics Publ., 2001)
  74. Wu L et al. Photonics Nanostruct. Fundam. Appl. 1 31 (2003)
  75. Marcuse D Theory Of Dielectric Optical Waveguides 2nd ed. (Boston: Acad. Press, 1991)
  76. Nussenzveig H M Diffraction Effects In Semiclassical Scattering (Cambridge: Cambridge Univ. Press, 1992)
  77. Ramakrishna S A, Pendry J B Phys. Rev. B 69 115115 (2004)
  78. Okamoto K, Kawata S Phys. Rev. Lett. 83 4534 (1999)
  79. Chaumet P C, Rahmani A, Nieto-Vesperinas M Phys. Rev. Lett. 88 123601 (2002)
  80. Ng L N et al. Appl. Phys. Lett. 76 1993 (2000)
  81. Büttiker M, Landauer R Phys. Rev. Lett. 49 1739 (1982)
  82. Pimpale A, Holloway S, Smith R J J. Phys. A 24 3533 (1991)
  83. Steck D A, Oskay W H, Raizen M G Science 293 274 (2001)
  84. Povinelli M L et al. Opt. Lett. 30 3042 (2005)
  85. León J J. Phys. A 30 4791 (1997)
  86. Aquilera-Navarro V C, Iwamoto H, de Aquino V M Int. J. Theor. Phys. 43 483 (2004)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions