Issues

 / 

2006

 / 

July

  



Short-range order and diffuse scattering in nonstoichiometric compounds


Institute of Solid State Chemistry, Urals Branch of the Russian Academy of Sciences, ul. Pervomayskaya 91, Ekaterinburg, 620219, Russian Federation

Diffraction studies of nonstoichiometric compounds have revealed a diverse range of diffuse scattering effects due to the short-range order induced by atom and vacancy substitution or by atomic displacements. In this paper, diffuse neutron and X-ray scattering data and electron diffraction data on short-range order in nonstoichiometric compounds are discussed. It is shown that the redistribution of non-metallic atoms and structural vacancies in disordered nonstoichiometric carbides, nitrides, and oxides produces diffuse intensity maxima in diffraction patterns, as does the redistribution of mutually substitutable metallic atoms in the solid solutions of nonstoichiometric compounds before long-range order sets in. A discussion is given of whether the cluster model of transition state is adequate for describing diffuse scattering intensity profile in a nonstoichiometric compound with substitutional short-range order. Flat extended diffuse scattering regions observed in the diffraction patterns of ordered phases and not passing through reciprocal lattice sites are discussed and shown to be due to the appearance of atomic displacement waves in the material.

Fulltext pdf (753 KB)
Fulltext is also available at DOI: 10.1070/PU2006v049n07ABEH005972
PACS: 61.10.−i, 61.12.−q, 61.66.Fn, 61.72.Ji (all)
DOI: 10.1070/PU2006v049n07ABEH005972
URL: https://ufn.ru/en/articles/2006/7/b/
000242169200002
2-s2.0-33751330602
2006PhyU...49..693G
Citation: Gusev A I "Short-range order and diffuse scattering in nonstoichiometric compounds" Phys. Usp. 49 693–718 (2006)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Гусев А И «Ближний порядок и диффузное рассеяние в нестехиометрических соединениях» УФН 176 717–743 (2006); DOI: 10.3367/UFNr.0176.200607b.0717

References (88) Cited by (26) ↓

  1. Sangiovanni D G, Kraych A et al Phys. Rev. Materials 7 (10) (2023)
  2. Miranda J, Gruhn T J. Electron. Mater. 51 2043 (2022)
  3. Schmidt E M, Bulled J M, Goodwin A L IUCrJ 9 21 (2022)
  4. Kostenko M G, Li J et al Journal Of Alloys And Compounds 891 162063 (2022)
  5. Mena J M, Gruhn T J. Mater. Chem. A 9 21111 (2021)
  6. Semin V O, Gudimova E Yu et al Materials Characterization 174 110967 (2021)
  7. Tan Sh, Nan P et al J. Phys. Chem. C 125 1125 (2021)
  8. Okeil Sh, Yadav S et al Dalton Trans. 49 1032 (2020)
  9. Shabalin I L Ultra-High Temperature Materials III Chapter 2 (2020) p. 11
  10. Shabalin I L Ultra-High Temperature Materials III Chapter 3 (2020) p. 515
  11. Roth N, Zhu T, Iversen B B IUCrJ 7 673 (2020)
  12. Nan P, Wu K et al Nanoscale 12 21624 (2020)
  13. Shabalin I L Ultra-High Temperature Materials II Chapter 4 (2019) p. 249
  14. Shabalin I L Ultra-High Temperature Materials II Chapter 5 (2019) p. 423
  15. Shabalin I L Ultra-High Temperature Materials II Chapter 3 (2019) p. 145
  16. Kostenko M G, Lukoyanov A V, Valeeva A A Mendeleev Communications 29 707 (2019)
  17. Shabalin I L Ultra-High Temperature Materials II Chapter 2 (2019) p. 9
  18. Sadovnikov S I, Rempel A A, Gusev A I Springer Series In Materials Science Vol. Nanostructured Lead, Cadmium, and Silver SulfidesNanostructured Cadmium Sulfide CdS256 Chapter 3 (2018) p. 127
  19. Kostenko M G, Sharf S V, Rempel A A Bull. Russ. Acad. Sci. Phys. 81 373 (2017)
  20. Valeeva A A, Nazarova S Z, Rempel A A J. Exp. Theor. Phys. 122 722 (2016)
  21. Kostenko M G, Rempel A A et al Phys. Solid State 57 637 (2015)
  22. Gusev A I, Valeeva A A Jetp Lett. 96 364 (2012)
  23. Gusev A I, Davydov D A, Valeeva A A Journal Of Alloys And Compounds 509 1364 (2011)
  24. Gusev A I Jetp Lett. 93 447 (2011)
  25. Vorokh A S, Rempel’ A A Jetp Lett. 91 100 (2010)
  26. Gusev A I Jetp Lett. 90 376 (2009)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions