Issues

 / 

2006

 / 

July

  



Knots and links in the order parameter distributions of strongly correlated systems


Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation

Research on the coherent distribution of order parameters determining phase existence regions in the two-component Ginzburg-Landau model is reviewed. A major result of this research, obtained by formulating this model in terms of gauged order parameters (the unit vector field n, the density ρ2, and the particle momentum c), is that some of the universal phase and field configuration properties are determined by topological features related to the Hopf invariant Q and its generalizations. For sufficiently low densities, a ring-shaped density distribution may be favored over stripes. For an L < Q phase (L being the mutual linking index of the n and c field configurations), a gain in free energy occurs when a transition to a nonuniform current state occurs. A universal mechanism accounting for decorrelation with increasing charge density is discussed. The second part of the review is concerned with implications of non-Abelian field theory for knotted configurations. The key properties of semiclassical configurations arising in the Yang-Mills theory and the Skyrme model are discussed in detail, and the relation of these configurations to knotted distributions is scrutinized.

Fulltext pdf (484 KB)
Fulltext is also available at DOI: 10.1070/PU2006v049n07ABEH006022
PACS: 02.40.−k, 11.15.−q, 11.27.+d, 74.20.De (all)
DOI: 10.1070/PU2006v049n07ABEH006022
URL: https://ufn.ru/en/articles/2006/7/a/
000242169200001
2-s2.0-33751345507
2006PhyU...49..667P
Citation: Protogenov A P "Knots and links in the order parameter distributions of strongly correlated systems" Phys. Usp. 49 667–691 (2006)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Протогенов А П «Узлы и зацепления распределений параметров порядка в сильно коррелированных системах» УФН 176 689–715 (2006); DOI: 10.3367/UFNr.0176.200607a.0689

References (153) Cited by (11) ↓

  1. Borisov A B Dokl. Phys. 65 359 (2020)
  2. Turkevich R V, Perov A A et al Jetp Lett. 106 188 (2017)
  3. Buniy R V, Cantarella Ja et al Phys. Rev. D 89 (5) (2014)
  4. Protogenov A P, Chulkov E V, Teo Je C Y J. Phys.: Conf. Ser. 482 012035 (2014)
  5. Martina L, Pavlov M V, Zykov S A J. Phys. A: Math. Theor. 46 275201 (2013)
  6. Martina L, Martone G I, Zykov S Acta Appl Math (2012)
  7. Eschrig H Lecture Notes In Physics Vol. Topology and Geometry for PhysicsTopology822 Chapter 2 (2010) p. 11
  8. Zinov’ev G M, Zinovjev G M i dr Teor. Mat. Fiz. 160 444 (2009) [Zinovjev G M, Molodtsov S V Theor Math Phys 160 1238 (2009)]
  9. Molodtsov S V, Zinovjev G M Phys. Rev. D 80 (7) (2009)
  10. Martina L, Protogenov A, Verbus V JNMP 15 353 (2008)
  11. Belyavskii V I, Kopaev Yu V Uspekhi Fizicheskikh Nauk 176 457 (2006)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions