Issues

 / 

2006

 / 

May

  



The mechanism for the primary biological effects of ionizing radiation

,
Russian Federation State Scientific Center ‘A.I. Alikhanov Institute of Theoretical and Experimental Physics’, ul. Bolshaya Cheremushkinskaya 25, Moscow, 117259, Russian Federation

The primary biological response of living organisms to the passage of fast charged particles is traditionally believed to be dominated by the chemical reactions of the radical products from the radiolysis of cellular water (ОН, Н, еaq-, 02-, Н2О2) and by the bioradicals that they produce (and which can also result from the direct electronic activation of biomolecules). This understanding has provided insight into how ionizing radiations affect biological systems and, most importantly, what radioprotection and radiosensibilizing effects are produced by chemical compounds introduced into an organism. However, a number of key radiobiological facts remain unexplained by the current theory, stimulating a search for other biologically active factors that may be triggered by radiation. This review examines a fact that is usually ignored in discussing the biological impact of ionizing radiation: the local increase in acidity in the water solution along the track of a charged particle. The acidity in the track is very different from its value for cellular water in a living organism. Biological processes are well-known to be highly sensitive to changes in the environmental acidity. It seems that the biological impact of ionizing radiations is dominated not by the water radiolysis products (mostly radicals) listed above but particles of a different nature, hydroxonium ions Н3О+, where the term hydroxonium refer to protonated water molecules. This modification of the mechanism of primary radiobiological effects is in good agreement with experimental data. In particular, the extremal dependence of the relative biological efficiency (RBE) of radiations on their ionizing energy losses is accounted for in quantitative terms, as is the increase in the RBE in the relativistic energy range.

Fulltext pdf (420 KB)
Fulltext is also available at DOI: 10.1070/PU2006v049n05ABEH005783
PACS: 82.39.−k, 87.50.−a, 87.50.Gi, 87.54.Br (all)
DOI: 10.1070/PU2006v049n05ABEH005783
URL: https://ufn.ru/en/articles/2006/5/b/
000240400900002
2-s2.0-33748622578
2006PhyU...49..469B
Citation: Byakov V M, Stepanov S V "The mechanism for the primary biological effects of ionizing radiation" Phys. Usp. 49 469–487 (2006)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Бяков В М, Степанов С В «К механизму первичного биологического действия ионизирующих излучений» УФН 176 487–506 (2006); DOI: 10.3367/UFNr.0176.200605b.0487

References (77) Cited by (17) ↓

  1. Zhu R, Song Yu Nanomedicine 1 (2024) p. 341
  2. Sultana A, Meesungnoen J, Jay-Gerin Je-P Radiation 4 26 (2024)
  3. Bepari M I, Meesungnoen J, Jay-Gerin Je-P Radiation 3 165 (2023)
  4. Pshenichnyuk S A, Asfandiarov N L et al Phys.-Usp. 65 163 (2022)
  5. Sultana A, Alanazi A et al Can. J. Chem. 100 272 (2022)
  6. Luthra M, Goswami K et al Atoms 10 74 (2022)
  7. Jay-Gerin J -P Cancer/Radiothérapie 24 332 (2020)
  8. Patwary M M, Sanguanmith S et al 6 (3) (2020)
  9. Patwary M M, Sanguanmith S et al Can. J. Chem. 97 366 (2019)
  10. Patwary M M, Kanike V et al Phys. Chem. Chem. Phys. 21 7137 (2019)
  11. Kovtun Yu V Ukr. J. Phys. 61 12 (2016)
  12. Kovtun Yu V Tech. Phys. 60 1110 (2015)
  13. Kobzev G I, Zaika Yu V Russ J Gen Chem 85 1005 (2015)
  14. Vernimmen F, Shmatov M L JBNB 06 204 (2015)
  15. Baizhumanov A A, Kainova A P et al Bull. Russ. Acad. Sci. Phys. 76 1195 (2012)
  16. Baizhumanov A A, Deev L I et al Bull. Russ. Acad. Sci. Phys. 75 1549 (2011)
  17. Zhmakin A I Uspekhi Fizicheskikh Nauk 178 243 (2008)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions