Issues

 / 

2006

 / 

February

  



Cladding modes of optical fibers: properties and applications

 a, ,  b
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b Kotel'nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, ul. Mokhovaya 11, kor. 7, Moscow, 125009, Russian Federation

One of the new methods of fiber optics uses cladding modes for controlling propagation of radiation in optical fibers. This paper reviews the results of studies on the propagation, excitation, and interaction of cladding modes in optical fibers. The resonance between core and cladding modes excited by means of fiber Bragg gratings, including tilted ones, is analyzed. Propagation of cladding modes in microstructured fibers is considered. The most frequently used method of exciting cladding modes is described, based on the application of long-period fiber gratings. Examples are presented of long-period gratings used as sensors and gain equalizers for fiber amplifiers, as well as devices for coupling light into and out of optical fibers.

Fulltext pdf (476 KB)
Fulltext is also available at DOI: 10.1070/PU2006v049n02ABEH005784
PACS: 42.25.−p, 42.79.Gn, 42.81.−i (all)
DOI: 10.1070/PU2006v049n02ABEH005784
URL: https://ufn.ru/en/articles/2006/2/b/
000238659100002
2-s2.0-33745679156
2006PhyU...49..167I
Citation: Ivanov O V, Nikitov S A, Gulyaev Yu V "Cladding modes of optical fibers: properties and applications" Phys. Usp. 49 167–191 (2006)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Иванов О В, Никитов С А, Гуляев Ю В «Оболочечные моды волоконных световодов, их свойства и применение» УФН 176 175–202 (2006); DOI: 10.3367/UFNr.0176.200602b.0175

References (185) Cited by (56) ↓

  1. Nayak S K, Panigrahi P K et al J Opt (2024)
  2. Zadok A, Zehavi E, Bernstein A 8 (7) (2023)
  3. Martinez-Ramirez L G, Silva A E C et al Infrared Physics & Technology 128 104508 (2023)
  4. Tao W, Yang L et al Measurement 223 113826 (2023)
  5. Butov O V, Tomyshev K A et al Uspekhi Fizicheskikh Nauk 192 1385 (2022)
  6. [Butov O V, Tomyshev K A et al Phys. Usp. 65 1290 (2022)]
  7. Zadok A, Diamandi H H et al Springer Series In Optical Sciences Vol. Forward Brillouin Scattering in Standard Optical FibersIntroduction: Interactions Between Guided Optical and Acoustic Waves240 Chapter 1 (2022) p. 1
  8. Ma Ch, Wang D et al Optical Fiber Technology 73 103019 (2022)
  9. Rusyakina O, Baghdasaryan T et al J. Lightwave Technol. 40 1121 (2022)
  10. Zhang Yu, Fontaine N K et al J. Lightwave Technol. 40 5107 (2022)
  11. Eisner L, Flachenecker G, Schade W Sensors And Actuators A: Physical 343 113687 (2022)
  12. Zehavi E, Bernstein A et al Optica 9 1433 (2022)
  13. Rego G, Caldas P, Ivanov O V Sensors 21 4914 (2021)
  14. Tomyshev K A, Dolzhenko E I, Butov O V Quantum Electron. 51 1113 (2021)
  15. Singh Ya, Raghuwanshi S K et al Opt Quant Electron 53 (11) (2021)
  16. Zolotovskii I O, Kadochkin A S et al Quantum Electron. 51 293 (2021)
  17. Bashan G, London Y et al Optica 7 85 (2020)
  18. Singh Ya, Sadhu A et al Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XX, (2020) p. 45
  19. Grigoriev V V, Mityurev A K et al Meas Tech 63 437 (2020)
  20. Grigoriev V V, Mityurev A K et al Izmer. Tekhn. (6) 22 (2020)
  21. Willberry Ja O, Papaelias M, Franklyn F G Sensors 20 6369 (2020)
  22. Lian X, Wu Q et al J. Lightwave Technol. 37 1873 (2019)
  23. Lian X, Farrell G et al 2019 18th International Conference on Optical Communications and Networks (ICOCN), (2019) p. 1
  24. Zhang Zh, Guo T, Guan B-O J. Lightwave Technol. 37 2815 (2019)
  25. Gorbenko N I, Il’in V P, Frumin L L Optoelectron.Instrument.Proc. 55 32 (2019)
  26. Arrizabalaga O, Velasco Ja et al Sensors And Actuators B: Chemical 297 126700 (2019)
  27. Zolotovskii I O, Korobko D A et al J. Opt. Soc. Am. B 36 2877 (2019)
  28. Osokin S, Sharaevskaya A et al J. Phys.: Conf. Ser. 1410 012189 (2019)
  29. Yusupova L I, Ivanov O V J. Phys.: Conf. Ser. 1281 012093 (2019)
  30. Ivanov O V J. Commun. Technol. Electron. 63 1143 (2018)
  31. Huang B, Yang L et al J. Lightwave Technol. 35 1640 (2017)
  32. Acuna H R, Hurtado C, Torres P I IEEE Photon. Technol. Lett. 29 595 (2017)
  33. Ryabtsev I I, Tretyakov D B et al Russ Microelectron 46 121 (2017)
  34. Ivanov O V, Tian F, Du H Optics Communications 402 238 (2017)
  35. Ivanov O V, Yang F et al Opt. Express 25 31197 (2017)
  36. Fathy A, Sabry Ya M, Khalil D A J. Opt. 19 105605 (2017)
  37. Castano C H, Herrera R A, Torres P I Advances In Optical Technologies 2016 1 (2016)
  38. Carter R M, Maier R R J et al J. Lightwave Technol. 34 3999 (2016)
  39. (International Conference on Photonics Solutions 2015) Vol. International Conference on Photonics Solutions 2015A demonstration of the simple optical fiber filter in visible and near-infrared wavelengths from green laser and red laser pointersSurasakChianggaSarunSumriddetchkajornW.TalataisongR.ChitareeK.Arayathanitkul9659 (2015) p. 96590K
  40. Ivanov O V, Chertoriyskiy A A Journal Of Sensors 2015 1 (2015)
  41. (Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014) Vol. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014Fiber optic sensing system for in-situ simultaneous monitoring of water stage, quality, and temperatureJerome P.LynchKon-WellWangHoonSohnYingHuang9061 (2014) p. 906125
  42. Ivanov O V, Zlodeev I V Meas. Sci. Technol. 25 015201 (2014)
  43. Bhatia N, John J Appl. Opt. 53 5179 (2014)
  44. Bhatia N, Rustagi K C, John J Opt. Express 22 16847 (2014)
  45. Kolpakov S, Gordon N et al Sensors 14 3986 (2014)
  46. Possetti G R C, Kamikawachi R C et al Optical Fiber Technology 19 543 (2013)
  47. Tao Q, Shilin X et al IEEE Photonics J. 5 7100608 (2013)
  48. Baiad M D, Gagné M et al Opt. Express 21 6873 (2013)
  49. Zlodeev I V, Ivanov O V Quantum Electron. 43 535 (2013)
  50. Baiad MD, Gagné M et al 2013 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching, (2013) p. ThL1_3
  51. Terent’ev V S Optoelectron.Instrument.Proc. 48 358 (2012)
  52. Costa R Z V, Kamikawachi R C et al Optics Communications 282 816 (2009)
  53. Mazhirina Yu A, Mel’nikov L A Opt. Spectrosc. 107 454 (2009)
  54. Eliseeva S V, Sementsov D I, Stepanov M M J. Commun. Technol. Electron. 53 1423 (2008)
  55. Grigor’evskiĭ A V, Grigor’evskiĭ V I, Nikitov S A Acoust. Phys. 54 289 (2008)
  56. Ivanov O V Optics Communications 272 395 (2007)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions