Issues

 / 

2006

 / 

February

  



Cladding modes of optical fibers: properties and applications

 a, ,  b
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences, ul. Mokhovaya 11, kor. 7, Moscow, 125009, Russian Federation

One of the new methods of fiber optics uses cladding modes for controlling propagation of radiation in optical fibers. This paper reviews the results of studies on the propagation, excitation, and interaction of cladding modes in optical fibers. The resonance between core and cladding modes excited by means of fiber Bragg gratings, including tilted ones, is analyzed. Propagation of cladding modes in microstructured fibers is considered. The most frequently used method of exciting cladding modes is described, based on the application of long-period fiber gratings. Examples are presented of long-period gratings used as sensors and gain equalizers for fiber amplifiers, as well as devices for coupling light into and out of optical fibers.

Fulltext pdf (476 KB)
Fulltext is also available at DOI: 10.1070/PU2006v049n02ABEH005784
PACS: 42.25.−p, 42.79.Gn, 42.81.−i (all)
DOI: 10.1070/PU2006v049n02ABEH005784
URL: https://ufn.ru/en/articles/2006/2/b/
000238659100002
2-s2.0-33745679156
2006PhyU...49..167I
Citation: Ivanov O V, Nikitov S A, Gulyaev Yu V "Cladding modes of optical fibers: properties and applications" Phys. Usp. 49 167–191 (2006)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Иванов О В, Никитов С А, Гуляев Ю В «Оболочечные моды волоконных световодов, их свойства и применение» УФН 176 175–202 (2006); DOI: 10.3367/UFNr.0176.200602b.0175

References (185) Cited by (63) ↓

  1. Audu E E, Eteng A A Results In Optics 18 100784 (2025)
  2. Ivanov O V, Bhavsar K, Gilbert Ja M Sensors 25 786 (2025)
  3. Li Y, Mehdi I et al Optics Communications 577 131386 (2025)
  4. Wang G, Liu J et al Opt. Express 33 8225 (2025)
  5. Nayak S K, Panigrahi P K et al J Opt 53 4901 (2024)
  6. Poret M, Flores G F et al Specialty Optical Fibres VIII, (2024) p. 16
  7. Di Rico G, Di Francesco B et al Adaptive Optics Systems IX, (2024) p. 174
  8. Losch M S, Visser B E et al PLoS ONE 19 e0314706 (2024)
  9. Ivanov O V, Bhavsar K et al Sensors 24 3397 (2024)
  10. Zadok A, Zehavi E, Bernstein A 8 (7) (2023)
  11. Martinez-Ramirez L G, Silva A E C et al Infrared Physics & Technology 128 104508 (2023)
  12. Tao W, Yang L et al Measurement 223 113826 (2023)
  13. Zadok A, Diamandi H H et al Springer Series In Optical Sciences Vol. Forward Brillouin Scattering in Standard Optical FibersIntroduction: Interactions Between Guided Optical and Acoustic Waves240 Chapter 1 (2022) p. 1
  14. Ma Ch, Wang D et al Optical Fiber Technology 73 103019 (2022)
  15. Eisner L, Flachenecker G, Schade W Sensors And Actuators A: Physical 343 113687 (2022)
  16. Butov O V, Tomyshev K A et al Uspekhi Fizicheskikh Nauk 192 1385 (2022) [Butov O V, Tomyshev K A et al Phys. Usp. 65 1290 (2022)]
  17. Zhang Yu, Fontaine N K et al J. Lightwave Technol. 40 5107 (2022)
  18. Zehavi E, Bernstein A et al Optica 9 1433 (2022)
  19. Rusyakina O, Baghdasaryan T et al J. Lightwave Technol. 40 1121 (2022)
  20. Tomyshev K A, Dolzhenko E I, Butov O V Quantum Electron. 51 1113 (2021)
  21. Zolotovskii I O, Kadochkin A S et al Quantum Electron. 51 293 (2021)
  22. Singh Ya, Raghuwanshi S K et al Opt Quant Electron 53 (11) (2021)
  23. Rego G, Caldas P, Ivanov O V Sensors 21 4914 (2021)
  24. Bashan G, London Y et al Optica 7 85 (2020)
  25. Singh Ya, Sadhu A et al Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XX, (2020) p. 45
  26. Willberry Ja O, Papaelias M, Franklyn F G Sensors 20 6369 (2020)
  27. Grigoriev V V, Mityurev A K et al Meas Tech 63 437 (2020)
  28. Grigoriev V V, Mityurev A K et al Izmer. Tekhn. (6) 22 (2020)
  29. Gorbenko N I, Il’in V P, Frumin L L Optoelectron.Instrument.Proc. 55 32 (2019)
  30. Arrizabalaga O, Velasco Ja et al Sensors And Actuators B: Chemical 297 126700 (2019)
  31. Yusupova L I, Ivanov O V J. Phys.: Conf. Ser. 1281 012093 (2019)
  32. Zolotovskii I O, Korobko D A et al J. Opt. Soc. Am. B 36 2877 (2019)
  33. Osokin S, Sharaevskaya A et al J. Phys.: Conf. Ser. 1410 012189 (2019)
  34. Zhang Zh, Guo T, Guan B-O J. Lightwave Technol. 37 2815 (2019)
  35. Lian X, Farrell G et al 2019 18th International Conference on Optical Communications and Networks (ICOCN), (2019) p. 1
  36. Lian X, Wu Q et al J. Lightwave Technol. 37 1873 (2019)
  37. Ivanov O V J. Commun. Technol. Electron. 63 1143 (2018)
  38. Acuna H R, Hurtado C, Torres P I IEEE Photon. Technol. Lett. 29 595 (2017)
  39. Ivanov O V, Yang F et al Opt. Express 25 31197 (2017)
  40. Ivanov O V, Tian F, Du H Optics Communications 402 238 (2017)
  41. Ryabtsev I I, Tretyakov D B et al Russ Microelectron 46 121 (2017)
  42. Fathy A, Sabry Ya M, Khalil D A J. Opt. 19 105605 (2017)
  43. Huang B, Yang L et al J. Lightwave Technol. 35 1640 (2017)
  44. Castano C H, Herrera R A, Torres P I Advances In Optical Technologies 2016 1 (2016)
  45. Carter R M, Maier R R J et al J. Lightwave Technol. 34 3999 (2016)
  46. (International Conference on Photonics Solutions 2015) Vol. International Conference on Photonics Solutions 2015A demonstration of the simple optical fiber filter in visible and near-infrared wavelengths from green laser and red laser pointersSurasakChianggaSarunSumriddetchkajornW.TalataisongR.ChitareeK.Arayathanitkul9659 (2015) p. 96590K
  47. Ivanov O V, Chertoriyskiy A A Journal Of Sensors 2015 1 (2015)
  48. Bhatia N, John J Appl. Opt. 53 5179 (2014)
  49. Ivanov O V, Zlodeev I V Meas. Sci. Technol. 25 015201 (2014)
  50. (Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014) Vol. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014Fiber optic sensing system for in-situ simultaneous monitoring of water stage, quality, and temperatureJerome P.LynchKon-WellWangHoonSohnYingHuang9061 (2014) p. 906125
  51. Kolpakov S, Gordon N et al Sensors 14 3986 (2014)
  52. Bhatia N, Rustagi K C, John J Opt. Express 22 16847 (2014)
  53. Baiad M D, Gagné M et al Opt. Express 21 6873 (2013)
  54. Tao Q, Shilin X et al IEEE Photonics J. 5 7100608 (2013)
  55. Baiad MD, Gagné M et al 2013 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching, (2013) p. ThL1_3
  56. Possetti G R C, Kamikawachi R C et al Optical Fiber Technology 19 543 (2013)
  57. Zlodeev I V, Ivanov O V Quantum Electron. 43 535 (2013)
  58. Terent’ev V S Optoelectron.Instrument.Proc. 48 358 (2012)
  59. Costa R Z V, Kamikawachi R C et al Optics Communications 282 816 (2009)
  60. Mazhirina Yu A, Mel’nikov L A Opt. Spectrosc. 107 454 (2009)
  61. Eliseeva S V, Sementsov D I, Stepanov M M J. Commun. Technol. Electron. 53 1423 (2008)
  62. Grigor’evskiĭ A V, Grigor’evskiĭ V I, Nikitov S A Acoust. Phys. 54 289 (2008)
  63. Ivanov O V Optics Communications 272 395 (2007)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions