Issues

 / 

2006

 / 

February

  



Cladding modes of optical fibers: properties and applications

 a, ,  b
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences, ul. Mokhovaya 11, kor. 7, Moscow, 125009, Russian Federation

One of the new methods of fiber optics uses cladding modes for controlling propagation of radiation in optical fibers. This paper reviews the results of studies on the propagation, excitation, and interaction of cladding modes in optical fibers. The resonance between core and cladding modes excited by means of fiber Bragg gratings, including tilted ones, is analyzed. Propagation of cladding modes in microstructured fibers is considered. The most frequently used method of exciting cladding modes is described, based on the application of long-period fiber gratings. Examples are presented of long-period gratings used as sensors and gain equalizers for fiber amplifiers, as well as devices for coupling light into and out of optical fibers.

Fulltext pdf (476 KB)
Fulltext is also available at DOI: 10.1070/PU2006v049n02ABEH005784
PACS: 42.25.−p, 42.79.Gn, 42.81.−i (all)
DOI: 10.1070/PU2006v049n02ABEH005784
URL: https://ufn.ru/en/articles/2006/2/b/
000238659100002
2-s2.0-33745679156
2006PhyU...49..167I
Citation: Ivanov O V, Nikitov S A, Gulyaev Yu V "Cladding modes of optical fibers: properties and applications" Phys. Usp. 49 167–191 (2006)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Îðèãèíàë: Èâàíîâ Î Â, Íèêèòîâ Ñ À, Ãóëÿåâ Þ Â «Îáîëî÷å÷íûå ìîäû âîëîêîííûõ ñâåòîâîäîâ, èõ ñâîéñòâà è ïðèìåíåíèå» ÓÔÍ 176 175–202 (2006); DOI: 10.3367/UFNr.0176.200602b.0175

References (185) Cited by (68) ↓

  1. Li Y, Mehdi I et al Optics Communications 577 131386 (2025)
  2. (IV INTERNATIONAL SCIENTIFIC AND TECHNICAL CONFERENCE “ACTUAL ISSUES OF POWER SUPPLY SYSTEMS”: ICAIPSS2024) Vol. IV INTERNATIONAL SCIENTIFIC AND TECHNICAL CONFERENCE “ACTUAL ISSUES OF POWER SUPPLY SYSTEMS”: ICAIPSS2024Overview of modern materials used for the production of optical fiber for fiber optic cablesOlimjonToirovVictoriaTsypkinaVeraIvanovaDilshodIsamukhamedovMikhailKozlitinZuvurToirov3331 (2025) p. 050029
  3. Gemechu W A, Ferraro M et al Opt. Lett. 50 (7) 2314 (2025)
  4. Ivanov O V, Bhavsar K, Gilbert Ja M Sensors 25 (3) 786 (2025)
  5. Rasel I A, Pappu M A H, Hossain Ja Physics Open 25 100302 (2025)
  6. Wang G, Liu J et al Opt. Express 33 (4) 8225 (2025)
  7. Audu E E, Eteng A A Results In Optics 18 100784 (2025)
  8. Allsop T, Tahir M W J. Compos. Sci. 9 (7) 343 (2025)
  9. Liu W, Shi Ju et al Cathet Cardio Intervent 105 (7) 1635 (2025)
  10. Nayak S K, Panigrahi P K et al J Opt 53 (5) 4901 (2024)
  11. Di Rico G, Di Francesco B et al Adaptive Optics Systems IX, (2024) p. 174
  12. Losch M S, Visser B E et al PLoS ONE 19 (12) e0314706 (2024)
  13. Ivanov O V, Bhavsar K et al Sensors 24 (11) 3397 (2024)
  14. Poret M, Flores G F et al Specialty Optical Fibres VIII, (2024) p. 16
  15. Zadok A, Zehavi E, Bernstein A APL Photonics 8 (7) (2023)
  16. Martinez-Ramirez L G, Silva A E C et al Infrared Physics & Technology 128 104508 (2023)
  17. Tao W, Yang L et al Measurement 223 113826 (2023)
  18. Butov O V, Tomyshev K A et al Uspekhi Fizicheskikh Nauk 192 (12) 1385 (2022) [Butov O V, Tomyshev K A et al Phys. Usp. 65 (12) 1290 (2022)]
  19. Rusyakina O, Baghdasaryan T et al J. Lightwave Technol. 40 (4) 1121 (2022)
  20. Eisner L, Flachenecker G, Schade W Sensors And Actuators A: Physical 343 113687 (2022)
  21. Ma Ch, Wang D et al Optical Fiber Technology 73 103019 (2022)
  22. Zehavi E, Bernstein A et al Optica 9 (12) 1433 (2022)
  23. Zhang Yu, Fontaine N K et al J. Lightwave Technol. 40 (15) 5107 (2022)
  24. Zadok A, Diamandi H H et al Springer Series In Optical Sciences Vol. Forward Brillouin Scattering in Standard Optical FibersIntroduction: Interactions Between Guided Optical and Acoustic Waves240 Chapter 1 (2022) p. 1
  25. Zolotovskii I O, Kadochkin A S et al Quantum Electron. 51 (4) 293 (2021)
  26. Tomyshev K A, Dolzhenko E I, Butov O V Quantum Electron. 51 (12) 1113 (2021)
  27. Rego G, Caldas P, Ivanov O V Sensors 21 (14) 4914 (2021)
  28. Singh Ya, Raghuwanshi S K et al Opt Quant Electron 53 (11) (2021)
  29. Bashan G, London Y et al Optica 7 (1) 85 (2020)
  30. Singh Ya, Sadhu A et al Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XX, (2020) p. 45
  31. Willberry Ja O, Papaelias M, Franklyn F G Sensors 20 (21) 6369 (2020)
  32. Grigoriev V V, Mityurev A K et al Meas Tech 63 (6) 437 (2020)
  33. Grigoriev V V, Mityurev A K et al Izmer. Tekhn. (6) 22 (2020)
  34. Gorbenko N I, Il’in V P, Frumin L L Optoelectron.Instrument.Proc. 55 (1) 32 (2019)
  35. Arrizabalaga O, Velasco Ja et al Sensors And Actuators B: Chemical 297 126700 (2019)
  36. Zolotovskii I O, Korobko D A et al J. Opt. Soc. Am. B 36 (10) 2877 (2019)
  37. Yusupova L I, Ivanov O V J. Phys.: Conf. Ser. 1281 (1) 012093 (2019)
  38. Zhang Zh, Guo T, Guan B-O J. Lightwave Technol. 37 (11) 2815 (2019)
  39. Osokin S, Sharaevskaya A et al J. Phys.: Conf. Ser. 1410 012189 (2019)
  40. Lian X, Farrell G et al 2019 18th International Conference on Optical Communications and Networks (ICOCN), (2019) p. 1
  41. Lian X, Wu Q et al J. Lightwave Technol. 37 (9) 1873 (2019)
  42. Ivanov O V J. Commun. Technol. Electron. 63 (10) 1143 (2018)
  43. Ivanov O V, Tian F, Du H Optics Communications 402 238 (2017)
  44. Huang B, Yang L et al J. Lightwave Technol. 35 (9) 1640 (2017)
  45. Acuna H R, Hurtado C, Torres P I IEEE Photon. Technol. Lett. 29 (7) 595 (2017)
  46. Ryabtsev I I, Tretyakov D B et al Russ Microelectron 46 (2) 121 (2017)
  47. Fathy A, Sabry Ya M, Khalil D A J. Opt. 19 (10) 105605 (2017)
  48. Ivanov O V, Yang F et al Opt. Express 25 (25) 31197 (2017)
  49. Castano C H, Herrera R A, Torres P I Advances In Optical Technologies 2016 1 (2016)
  50. Carter R M, Maier R R J et al J. Lightwave Technol. 34 (17) 3999 (2016)
  51. (International Conference on Photonics Solutions 2015) Vol. International Conference on Photonics Solutions 2015A demonstration of the simple optical fiber filter in visible and near-infrared wavelengths from green laser and red laser pointersSurasakChianggaSarunSumriddetchkajornW.TalataisongR.ChitareeK.Arayathanitkul9659 (2015) p. 96590K
  52. Ivanov O V, Chertoriyskiy A A Journal Of Sensors 2015 1 (2015)
  53. Kolpakov S, Gordon N et al Sensors 14 (3) 3986 (2014)
  54. Bhatia N, Rustagi K C, John J Opt. Express 22 (14) 16847 (2014)
  55. Bhatia N, John J Appl. Opt. 53 (23) 5179 (2014)
  56. (Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014) Vol. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014Fiber optic sensing system for in-situ simultaneous monitoring of water stage, quality, and temperatureJerome P.LynchKon-WellWangHoonSohnYingHuang9061 (2014) p. 906125
  57. Ivanov O V, Zlodeev I V Meas. Sci. Technol. 25 (1) 015201 (2014)
  58. Baiad MD, Gagné M et al 2013 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching, (2013) p. ThL1_3
  59. Possetti G R C, Kamikawachi R C et al Optical Fiber Technology 19 (6) 543 (2013)
  60. Zlodeev I V, Ivanov O V Quantum Electron. 43 (6) 535 (2013)
  61. Tao Q, Shilin X et al IEEE Photonics J. 5 (4) 7100608 (2013)
  62. Baiad M D, Gagné M et al Opt. Express 21 (6) 6873 (2013)
  63. Terent’ev V S Optoelectron.Instrument.Proc. 48 (4) 358 (2012)
  64. Mazhirina Yu A, Mel’nikov L A Opt. Spectrosc. 107 (3) 454 (2009)
  65. Costa R Z V, Kamikawachi R C et al Optics Communications 282 (5) 816 (2009)
  66. Eliseeva S V, Sementsov D I, Stepanov M M J. Commun. Technol. Electron. 53 (12) 1423 (2008)
  67. Grigor’evskiĭ A V, Grigor’evskiĭ V I, Nikitov S A Acoust. Phys. 54 (3) 289 (2008)
  68. Ivanov O V Optics Communications 272 (2) 395 (2007)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions