Issues

 / 

2006

 / 

October

  



Similarity laws for pulsed gas discharges


Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

The feasibility of applying the similarity law to different types of pulsed discharges is analyzed. The analysis is based on the dependence pτ = f(E/p), where τ is the charge formation time, p is the gas pressure, and E is the pulsed field strength at which the breakdown occurs. The law holds for the Townsend and streamer breakdowns for a relatively long discharge gap d (for atmospheric air, d > 1 cm). For millimeter gaps, this law applies to many gases only in the case of the multielectron breakdown initiation down to the picosecond range. In this case, the time s is measured from the instant the voltage amplitude sets in to the onset of current buildup and of the drop in voltage across the gap during the simultaneous development of a large number of electron avalanches. In the initiation by a small number of electrons, the time τ is longer than in the multielectron initiation by nearly an order of magnitude; this is due to the relatively low rate of free-electron accumulation in the gap, with runaway electrons (REs) playing an important role in this process. But the time θ of the fast voltage drop and current buildup obeys the similarity law = F(E/p) in both cases. It is hypothesized that the source of REs is the field emission from cathodic micropoints, which terminates at the onset of explosive electron emission to limit the RE current pulse duration to 10-10 s. The similarity law = f (E/p) is shown to hold for a pulsed microwave breakdown.

Fulltext pdf (324 KB)
Fulltext is also available at DOI: 10.1070/PU2006v049n10ABEH006118
PACS: 52.80.−s, 52.80.Dy, 52.80.Pi (all)
DOI: 10.1070/PU2006v049n10ABEH006118
URL: https://ufn.ru/en/articles/2006/10/d/
000244185100004
2-s2.0-33847031354
2006PhyU...49.1045M
Citation: Mesyats G A "Similarity laws for pulsed gas discharges" Phys. Usp. 49 1045–1065 (2006)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Îðèãèíàë: Ìåñÿö Ã À «Çàêîíû ïîäîáèÿ â èìïóëüñíûõ ãàçîâûõ ðàçðÿäàõ» ÓÔÍ 176 1069–1091 (2006); DOI: 10.3367/UFNr.0176.200610d.1069

References (54) Cited by (79) ↓

  1. Karabassov T, Vasenko A S et al J. Phys. Chem. Lett. 14 10880 (2023)
  2. Wang H, Venkattraman A et al 134 (10) (2023)
  3. Wang H, Yang D et al 134 (6) (2023)
  4. Li Ya, Pan Yu et al 30 (3) (2023)
  5. Fu Ya, Wang H, Wang X Rev. Mod. Plasma Phys. 7 (1) (2023)
  6. Pan Yu, Li Ya et al 29 (5) (2022)
  7. Ivanov D A «Izvestiya Vysshikh Uchebnykh Zavedenii. PROBLEMY ENERGETIKI» 24 151 (2022)
  8. Zubarev N M, Zubareva O V, Yalandin M I Electronics 11 2771 (2022)
  9. Yang D, Wang H et al Plasma Sources Sci. Technol. 31 115002 (2022)
  10. Bokhan P A, Glubokov N A et al J. Phys.: Conf. Ser. 2064 012010 (2021)
  11. Yang D, Fu Ya et al Plasma Sources Sci. Technol. 30 115009 (2021)
  12. Mesyats G A, Vasenina I V Plasma Phys. Rep. 47 907 (2021)
  13. Sharypov K A, Shunailov S A et al IEEE Trans. Plasma Sci. 49 2516 (2021)
  14. Kim H Y, Gołkowski M, Harid V Plasma Res. Express 3 025003 (2021)
  15. Fu Ya, Wang H et al Phys. Rev. Applied 16 (5) (2021)
  16. Oreshkin V I, Oreshkin E V Plasma Phys. Control. Fusion 63 125013 (2021)
  17. Baboraik A, Usachev A 72 66 (2021)
  18. Balmelli M, Farber R et al IEEE Access 9 100050 (2021)
  19. Lyu X, Yuan Ch et al Plasma Phys. Rep. 47 369 (2021)
  20. Fu Ya, Zheng B et al 27 (11) (2020)
  21. Diab F, Gaber W H et al Can. J. Phys. 98 726 (2020)
  22. Zubarev N M, Kozhevnikov V Yu et al Plasma Sources Sci. Technol. 29 125008 (2020)
  23. Garner A L, Meng G et al 128 (21) (2020)
  24. Baboraik A M, Usachev A E, Ali Z M J. Electr. Eng. Technol. 15 1301 (2020)
  25. Mesyats G A, Yalandin M I et al 116 (6) (2020)
  26. Ginzburg N S, Zaslavsky V Yu et al 117 (18) (2020)
  27. Zubarev N, Sadykova A et al 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE), (2020) p. 32
  28. Fu Ya, Zhang P et al Plasma Res. Express 2 013001 (2020)
  29. Beloplotov D B, Lomaev M I et al Russ Phys J 62 1171 (2019)
  30. Fu Ya, Krek Ja et al Plasma Sources Sci. Technol. 28 095012 (2019)
  31. Fu Ya, Verboncoeur J P IEEE Trans. Plasma Sci. 47 1994 (2019)
  32. Han X-Yu, Wang Ju-H et al Chinese Phys. B 27 085206 (2018)
  33. Peng Ya, Jiang W et al J. Plasma Phys. 84 (5) (2018)
  34. Naidis G V, Tarasenko V F et al Plasma Sources Sci. Technol. 27 013001 (2018)
  35. Fu Ya, Parsey G et al 2017 IEEE International Conference on Plasma Science (ICOPS), (2017) p. 1
  36. Oreshkin V I, Oreshkin E V Tech. Phys. 62 32 (2017)
  37. Baksht E Kh, Buranchenko A G et al Russ Phys J 60 1413 (2017)
  38. Oreshkin E V, Barengolts S A et al 24 (10) (2017)
  39. Fu Ya, Wang X et al 24 (8) (2017)
  40. Chen L, Yang L et al 88 (11) (2017)
  41. Fu Ya, Parsey G M et al 24 (11) (2017)
  42. Burachenko A G, Tarasenko V F, Baksht E Kh High Voltage 2 56 (2017)
  43. Malashin M V, Moshkunkov S I et al Plasma Phys. Rep. 43 170 (2017)
  44. Ivanov S N, Sharypov K A Tech. Phys. Lett. 42 274 (2016)
  45. Oreshkin V I, Oreshkin E V et al 23 (9) (2016)
  46. Shunli Ya, Fangming R et al 2016 10th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID), (2016) p. 79
  47. Sadykov N R, Belonenko M B, Peshkov D A Semiconductors 49 663 (2015)
  48. Sadykov N R, Akhlyustina E A, Peshkov D A Teoreticheskaya Matematicheskaya Fizika 184 307 (2015) [Sadykov N R, Akhlyustina E A, Peshkov D A Theor Math Phys 184 1163 (2015)]
  49. Ivanov S N, Sharypov K A Tech. Phys. 60 1478 (2015)
  50. Fu Ya, Luo H et al Plasma Sources Sci. Technol. 23 065035 (2014)
  51. Voronov M, Hoffmann V et al Plasma Sources Sci. Technol. 23 054009 (2014)
  52. Fu Ya, Luo H et al IEEE Trans. Plasma Sci. 42 1544 (2014)
  53. Sadykov N R Tech. Phys. 59 1191 (2014)
  54. Fu Ya-Ya, Luo H-Yu et al Chinese Phys. Lett. 31 075201 (2014)
  55. Fu Y, Luo H et al 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS), (2014) p. 1
  56. Stefanović I, Kuschel T et al 116 (11) (2014)
  57. Sadykov N R, Scorkin N A, Akhljustina E A Semiconductors 47 1246 (2013)
  58. Sadykov N R, Skorkin N A Tech. Phys. 58 625 (2013)
  59. Sadykov N R, Kocherga E Yu, D’yachkov P N Russ. J. Inorg. Chem. 58 951 (2013)
  60. Meyer C, Franzke J, Gurevich E L J. Phys. D: Appl. Phys. 45 355205 (2012)
  61. Yusupaliev U Bull. Lebedev Phys. Inst. 39 131 (2012)
  62. Afonin O N Bull. Lebedev Phys. Inst. 38 267 (2011)
  63. Shao T, Zhang Ch et al 98 (2) (2011)
  64. Shao T, Tarasenko V F et al New J. Phys. 13 113035 (2011)
  65. Alisoy H Z, Yesil A et al Journal Of Electrostatics 69 284 (2011)
  66. Sadykov N R, Skorkin N A Tech. Phys. Lett. 36 811 (2010)
  67. Yalandin M I, Reutova A G et al IEEE Trans. Plasma Sci. 38 1398 (2010)
  68. Pikulev A A, Tsvetkov V M Tech. Phys. 55 44 (2010)
  69. Lissovski A A, Treshchalov A B Physics Of Plasmas 16 123501 (2009)
  70. Tardiveau P, Moreau N et al J. Phys. D: Appl. Phys. 42 175202 (2009)
  71. Avtaeva S V, Kulumbaev E B Plasma Phys. Rep. 35 329 (2009)
  72. Yalandin M I, Reutova A G et al 2009 IEEE Pulsed Power Conference, (2009) p. 476
  73. Gizatullin F A, Zinov’ev K V Russ. Aeronaut. 51 173 (2008)
  74. Yusupaliev U, Elenskii V G Bull. Lebedev Phys. Inst. 35 22 (2008)
  75. Yusupaliev U Moscow Univ. Phys. 63 224 (2008)
  76. Kudryavtsev A A, Popugaev S D et al 93 (24) (2008)
  77. Nikandrov D S, Tsendin L D et al IEEE Trans. Plasma Sci. 36 131 (2008)
  78. Mesyats G A, Yalandin M I et al IEEE Trans. Plasma Sci. 36 2497 (2008)
  79. Tarasenko V F, Rybka D B et al Russ Phys J 50 944 (2007)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions