Issues

 / 

2006

 / 

October

  



Similarity laws for pulsed gas discharges


Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

The feasibility of applying the similarity law to different types of pulsed discharges is analyzed. The analysis is based on the dependence pτ = f(E/p), where τ is the charge formation time, p is the gas pressure, and E is the pulsed field strength at which the breakdown occurs. The law holds for the Townsend and streamer breakdowns for a relatively long discharge gap d (for atmospheric air, d > 1 cm). For millimeter gaps, this law applies to many gases only in the case of the multielectron breakdown initiation down to the picosecond range. In this case, the time s is measured from the instant the voltage amplitude sets in to the onset of current buildup and of the drop in voltage across the gap during the simultaneous development of a large number of electron avalanches. In the initiation by a small number of electrons, the time τ is longer than in the multielectron initiation by nearly an order of magnitude; this is due to the relatively low rate of free-electron accumulation in the gap, with runaway electrons (REs) playing an important role in this process. But the time θ of the fast voltage drop and current buildup obeys the similarity law = F(E/p) in both cases. It is hypothesized that the source of REs is the field emission from cathodic micropoints, which terminates at the onset of explosive electron emission to limit the RE current pulse duration to 10-10 s. The similarity law = f (E/p) is shown to hold for a pulsed microwave breakdown.

Text can be downloaded in Russian. English translation is available on IOP Science.
PACS: 52.80.−s, 52.80.Dy, 52.80.Pi (all)
DOI: 10.1070/PU2006v049n10ABEH006118
URL: https://ufn.ru/en/articles/2006/10/d/
Citation: Mesyats G A "Similarity laws for pulsed gas discharges" Phys. Usp. 49 1045–1065 (2006)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Месяц Г А «Законы подобия в импульсных газовых разрядах» УФН 176 1069–1091 (2006); DOI: 10.3367/UFNr.0176.200610d.1069

References (54) Cited by (48) ↓

  1. Fu Ya, Verboncoeur J P IEEE Trans. Plasma Sci. 47 1994 (2019)
  2. Fu Ya, Krek Ja et al Plasma Sources Sci. Technol. 28 095012 (2019)
  3. Naidis G V, Tarasenko V F et al Plasma Sources Sci. Technol. 27 013001 (2018)
  4. Peng Ya, Jiang W et al J. Plasma Phys. 84 (5) (2018)
  5. Han X-Yu, Wang Ju-H et al Chinese Phys. B 27 085206 (2018)
  6. Fu Ya, Wang X et al Physics Of Plasmas 24 083510 (2017)
  7. Burachenko A G, Tarasenko V F, Baksht E Kh 2 56 (2017)
  8. Fu Ya, Parsey G M et al Physics Of Plasmas 24 113518 (2017)
  9. Oreshkin E V, Barengolts S A et al Physics Of Plasmas 24 103505 (2017)
  10. Malashin M V, Moshkunkov S I et al Plasma Phys. Rep. 43 170 (2017)
  11. Chen L, Yang L et al Review Of Scientific Instruments 88 113505 (2017)
  12. Baksht E Kh, Buranchenko A G et al Russ Phys J 60 1413 (2017)
  13. Oreshkin V I, Oreshkin E V Tech. Phys. 62 32 (2017)
  14. Shunli Ya, Fangming R et al 2016 10th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID), (2016) p. 79
  15. Oreshkin V I, Oreshkin E V et al Physics Of Plasmas 23 092701 (2016)
  16. Ivanov S N, Sharypov K A Tech. Phys. Lett. 42 274 (2016)
  17. Ivanov S N, Sharypov K A Tech. Phys. 60 1478 (2015)
  18. Sadykov N R, Sadykov N R i dr Teoreticheskaya Matematicheskaya Fizika 184 307 (2015) [Sadykov N R, Akhlyustina E A, Peshkov D A Theor Math Phys 184 1163 (2015)]
  19. Sadykov N R, Belonenko M B, Peshkov D A Semiconductors 49 663 (2015)
  20. Sadykov N R Tech. Phys. 59 1191 (2014)
  21. Voronov M, Hoffmann V et al Plasma Sources Sci. Technol. 23 054009 (2014)
  22. Fu Y, Luo H et al 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS), (2014) p. 1
  23. Stefanović I, Kuschel T et al Journal Of Applied Physics 116 113302 (2014)
  24. Fu Ya, Luo H et al IEEE Trans. Plasma Sci. 42 1544 (2014)
  25. Fu Ya-Ya, Luo H-Yu et al Chinese Phys. Lett. 31 075201 (2014)
  26. Fu Ya, Luo H et al Plasma Sources Sci. Technol. 23 065035 (2014)
  27. Sadykov N R, Skorkin N A Tech. Phys. 58 625 (2013)
  28. Sadykov N R, Scorkin N A, Akhljustina E A Semiconductors 47 1246 (2013)
  29. Sadykov N R, Kocherga E Yu, D’yachkov P N Russ. J. Inorg. Chem. 58 951 (2013)
  30. Yusupaliev U Bull. Lebedev Phys. Inst. 39 131 (2012)
  31. Meyer C, Franzke J, Gurevich E L J. Phys. D: Appl. Phys. 45 355205 (2012)
  32. Tarasenko V F, Baksht E Kh et al Appl. Phys. Lett. 98 021503 (2011)
  33. Shao T, Tarasenko V F et al New J. Phys. 13 113035 (2011)
  34. Alisoy H Z, Yesil A et al Journal Of Electrostatics 69 284 (2011)
  35. Afonin O N Bull. Lebedev Phys. Inst. 38 267 (2011)
  36. Yalandin M I, Reutova A G et al IEEE Trans. Plasma Sci. 38 1398 (2010)
  37. Sadykov N R, Skorkin N A Tech. Phys. Lett. 36 811 (2010)
  38. Pikulev A A, Tsvetkov V M Tech. Phys. 55 44 (2010)
  39. Avtaeva S V, Kulumbaev E B Plasma Phys. Rep. 35 329 (2009)
  40. Lissovski A A, Treshchalov A B Physics Of Plasmas 16 123501 (2009)
  41. Tardiveau P, Moreau N et al J. Phys. D: Appl. Phys. 42 175202 (2009)
  42. Yalandin M I, Reutova A G et al 2009 IEEE Pulsed Power Conference, (2009) p. 476
  43. Nikandrov D S, Tsendin L D et al IEEE Trans. Plasma Sci. 36 131 (2008)
  44. Yusupaliev U Moscow Univ. Phys. 63 224 (2008)
  45. Mesyats G A, Yalandin M I et al IEEE Trans. Plasma Sci. 36 2497 (2008)
  46. Kudryavtsev A A, Popugaev S D et al Appl. Phys. Lett. 93 241501 (2008)
  47. Gizatullin F A, Zinov’ev K V Russ. Aeronaut. 51 173 (2008)
  48. Tarasenko V F, Rybka D B et al Russ Phys J 50 944 (2007)

© 1918–2019 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions