Issues

 / 

2006

 / 

October

  



Spatial dispersion and negative refraction of light

 a,  b
a Institute of Spectroscopy, Russian Academy of Sciences, ul. Fizicheskaya 5, Troitsk, Moscow, 108840, Russian Federation
b Department of Physics, The University of Texas at Dallas, Richardson, Texas, USA

Negative refraction at the interface between two media occurs as a natural consequence of wave group velocity being negative in one of the media. In this review the historical origins of this understanding are briefly described. A number of systems supporting normal electromagnetic waves (polaritons) with negative group velocity at optical frequencies are analyzed by including spatial dispersion and making use of the generalized dielectric tensor εij(ω, k), which determines the response of a medium to an electromagnetic wave of frequency ω and wave vector k. Negative group velocity polaritons occur when the medium (whether a natural one or an artificial meta-material) has a sufficiently strong spatial dispersion. Examples of bulk waves and surface waves are given both for chiral and nonchiral systems. The relationship between the εij(ω, k) approach and the more common but less comprehensive description using the dielectric permittivity ε(ω) and magnetic permeability μ(ω) is discussed.

Fulltext pdf (289 KB)
Fulltext is also available at DOI: 10.1070/PU2006v049n10ABEH006067
PACS: 42.25-p, 71.36+c, 78.20.Ci
DOI: 10.1070/PU2006v049n10ABEH006067
URL: https://ufn.ru/en/articles/2006/10/c/
000244185100003
2-s2.0-33847051663
2006PhyU...49.1029A
Citation: Agranovich V M, Gartstein Yu N "Spatial dispersion and negative refraction of light" Phys. Usp. 49 1029–1044 (2006)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Агранович В М, Гартштейн Ю Н «Пространственная дисперсия и отрицательное преломление света» УФН 176 1051–1068 (2006); DOI: 10.3367/UFNr.0176.200610c.1051

References (64) ↓ Cited by (201)

  1. Mandel’shtam L I Polnoe Sobranie Trudov Vol. 5 (M.: Izd-vo AN SSSR, 1950), sm. lektsii, prochitannye 26 fevralya 1940 g. i 5 maya 1944 g.
  2. Mandel’shtam L I Zh. Eksp. Teor. Fiz. 15 475 (1945)
  3. Mandel’shtam L I Lektsii Po Optike, Teorii Otnositel’nosti i Kvantovoi Mekhanike (M.: Nauka, 1972)
  4. Schuster A (Sir) An Introduction To The Theory Of Optics 2nd ed. (London: E. Arnold, 1909)
  5. Brillouin L Wave Propagation And Group Velocity (New York: Academic Press, 1960)
  6. Landau L D, Lifshits E M Elektrodinamika Sploshnykh Sred (M.: Nauka, 1992)
  7. Agranovich V M, Ginzburg V L Kristallooptika s Uchetom Prostranstvennoi Dispersii i Teroiya Eksitonov (M.: Nauka, 1965)
  8. Agranovich V M et al. Phys. Rev. B 69 165112 (2004)
  9. Agranovich V M et al. J. Lumin. 110 167 (2004)
  10. Veselago V G Usp. Fiz. Nauk 92 517 (1967); Veselago V G Sov. Phys. Usp. 10 509 (1968)
  11. Sivukhin D V Optika Spektrosk. 3 308 (1957)
  12. Pafomov V E Zh. Eksp. Teor. Fiz. 36 1853 (1959)
  13. Pafomov V E Zh. Eksp. Teor. Fiz. 30 761 (1956); Pafomov V E Zh. Eksp. Teor. Fiz. 33 1074 (1957)
  14. Shelby R A, Smith D R, Schultz S Science 292 77 (2001)
  15. Pendry J B Phys. Rev. Lett. 85 3966 (2000)
  16. Feinberg E L Usp. Fiz. Nauk 172 91 (2002); Feinberg E L Phys. Usp. 45 81 (2002)
  17. McDonald K T Am. J. Phys. 69 607 (2001)
  18. Lamb H Proc. London Math. Soc. 1 473 (1904)
  19. Laue M Ann. Phys. (Leipzig) 18 523 (1905)
  20. Agranovich V M, Pafomov V E, Rukhadze A A Zh. Eksp. Teor. Fiz. 36 238 (1959); Bass F G, Kaganov M I, Yakovenko V M Fiz. Tverd. Tela 4 3260 (1962)
  21. Frank I M Zh. Eksp. Teor. Fiz. 36 823 (1959)
  22. Barsukov K A Zh. Eksp. Teor. Fiz. 36 1485 (1959)
  23. Il’inskii Yu A, Keldysh L V Vzaimodeistvie Elektromagnitnogo Izlucheniya s Veshchestvom (M.: Izd-vo MGU, 1989)
  24. Rytov S M Zh. Eksp. Teor. Fiz. 17 930 (1947)
  25. Gertsenshtein M E Zh. Eksp. Teor. Fiz. 26 680 (1954)
  26. Melrose D B, McPhedran R C Electromagnetic Processes In Dispersive Media: A Treatment On The Dielectric Tensor (Cambridge: Cambridge Univ. Press, 1991)
  27. Golubkov A A, Makarov V A Usp. Fiz. Nauk 165 339 (1995); Golubkov A A, Makarov V A Phys. Usp. 38 325 (1995)
  28. Vinogradov A P Usp. Fiz. Nauk 172 363 (2002); Vinogradov A P Phys. Usp. 45 331 (2002)
  29. Bedeaux D, Osipov M, Vlieger J J. Opt. Soc. Am. A 12 2431 (2004)
  30. Keldysh L V, Kirzhnitz D A, Maradudin A A (Eds) The Dielectric Function Of Condensed Systems (Modern Problems in Condensed Matter Sciences, Vol. 24) (Amsterdam: North-Holland, 1989)
  31. Mahan G D Many-Particle Physics 3rd ed. (New York: Kluwer Acad./Plenum Publ., 2000)
  32. Toyozawa Y Optical Processes In Solids (Cambridge: Cambridge Univ. Press, 2003)
  33. Craig D P, Thirunamachandran T Molecular Quantum Electrodynamics: An Introduction To Radiation-Molecule Interactions (London: Academic Press, 1984)
  34. Barron L D Molecular Light Scattering And Optical Activity 2nd ed. (Cambridge: Cambridge Univ. Press, 2004)
  35. Dzhekson Dzh D Klassicheskaya Elektrodinamika (M.: Mir, 1965)
  36. Ginzburg V L Zh. Eksp. Teor. Fiz. 34 1993 (1958)
  37. Pekar S I Zh. Eksp. Teor. Fiz. 33 1022 (1957)
  38. Silvestri L et al. Nuovo Cimento C 27 437 (2004)
  39. Agranovich V M Usp. Fiz. Nauk 71 141 (1960); Agranovich V M Sov. Phys. Usp. 3 427 (1960)
  40. Pine A S, Dresselhaus G Phys. Rev. 188 1489 (1969)
  41. Pendry J B Science 306 1353 (2004)
  42. Tretyakov S et al. J. Electromagn. Waves Appl. 17 695 (2003)
  43. Mackay T G Microw. Opt. Technol. Lett. 45 120 (2005)
  44. Jin Y, He S Opt. Express 13 4974 (2005)
  45. Monzon C, Forester D W Phys. Rev. Lett. 95 123904 (2005)
  46. Agranovich V M, Gartstein Yu N, Zakhidov A A Phys. Rev. B 73 045114 (2006)
  47. Agranovich V M v Sb. Poverkhnostnye Polyaritony: Elektromagnitnye Volny na Poverkhnostyakh i Granitsakh Razdela Sred (Pod red. V M Agranovicha, D L Millsa) (M.: Nauka, 1985)
  48. Lopez-Rios T, Abeles F, Vuye G J. Phys. (Paris) 39 645 (1978)
  49. Vinogradov E A, Leskova T A Phys. Rep. 194 273 (1990)
  50. Yakovlev V A, Nazin V G, Zhizhin G N Opt. Commun. 15 293 (1975)
  51. Pockrand I, Brillante A, Möbius D J. Chem. Phys. 77 6289 (1982)
  52. Bellessa J et al. Phys. Rev. Lett. 93 036404 (2004)
  53. Agranovich V M, Leskova T A Prog. Surf. Sci. 29 169 (1988)
  54. Pendry J B Phys. Rev. Lett. 85 3966 (2000)
  55. Moroz A http://www.wave-scattering.com/negative.html
  56. Grigorenko A N et al. Nature 438 335 (2005)
  57. Shalaev V M et al. Opt. Lett. 30 3356 (2005)
  58. Taflove A Computational Electrodynamics: The Finite-Difference Time-Domain Method (Boston: Artech House, 1995)
  59. Shadrivov I V, Zharov A A, Kivshar Yu S J. Opt. Soc. Am. B 23 529 (2006); Shadrivov I V, Zharov A A, Kivshar Yu S physics/0506092
  60. Tarasenko O S, Tarasenko S V, Yurchenko V M Pis’ma ZhETF 80 551 (2004)
  61. Kozyrev A B et al. Appl. Phys. Lett. 87 121109 (2005)
  62. Lapine M, Gorkunov M, Ringhofer K H Phys. Rev. E 67 065601 (2003)
  63. Zharov A A, Shadrivov I V, Kivshar Yu S Phys. Rev. Lett. 91 037401 (2003)
  64. O’Brien S et al. Phys. Rev. B 69 241101(R) (2004)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions