Issues

 / 

2004

 / 

September

  

Reviews of topical problems


Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory)


Russian Federation State Scientific Center ‘A.I. Alikhanov Institute of Theoretical and Experimental Physics’, ul. Bolshaya Cheremushkinskaya 25, Moscow, 117259, Russian Federation

The theoretical description of the nonlinear photoionization of atoms and ions exposed to high-intensity laser radiation is underlain by the Keldysh theory proposed in 1964. The paper reviews this theory and its further development. The discussion is concerned with the energy and angular photoelectron distributions for the cases of linearly, circularly, and elliptically polarized laser radiation, with the ionization rate of atomic states exposed to a monochromatic electromagnetic wave and to ultrashort laser pulses of various shape, and with momentum and angular photoelectron spectra in these cases. The limiting cases of tunnel (γ " 1) and multiphoton (γ " 1) ionization are discussed, where c is the adiabaticity parameter, or the Keldysh parameter. The probability of above-barrier ionization is calculated for hydrogen atoms in a low-frequency laser field. The effect of a strong magnetic field on the ionization probability is discussed. The process of Lorentz ionization occurring in the motion of atoms and ions in a constant magnetic field is considered. The properties of an exactly solvable model-the ionization of an s-level bound by zero-range forces in the field of a circularly polarized electromagnetic wave-are described. In connection with this example, the Zel’dovich regularization method in the theory of quasistationary states is discussed. Results of the Keldysh theory are compared with experiment. A brief discussion is made of the relativistic ionization theory applicable when the binding energy of the atomic level is comparable with the electron rest mass (multiply charged ions) and the sub-barrier electron motion can no longer be considered to be nonrelativistic. A similar process of electron-positron pair production from a vacuum by the field of high-power optical or X-ray lasers (the Schwinger effect) is considered. The calculations invoke the method of imaginary time, which provides a convenient and physically clear way of calculating the probability of particle tunneling through time-varying barriers. Discussed in the Appendices are the properties of the asymptotic coefficients of the atomic wave function, the expansions for the Keldysh function, and the so-called ’ADK theory’.

Fulltext pdf (625 KB)
Fulltext is also available at DOI: 10.1070/PU2004v047n09ABEH001812
PACS: 12.20.Ds, 32.80.−t, 42.50.Hz (all)
DOI: 10.1070/PU2004v047n09ABEH001812
URL: https://ufn.ru/en/articles/2004/9/a/
000226203600001
2004PhyU...47..855P
Citation: Popov V S "Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory)" Phys. Usp. 47 855–885 (2004)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Попов В С «Туннельная и многофотонная ионизация атомов и ионов в сильном лазерном поле (теория Келдыша)» УФН 174 921–951 (2004); DOI: 10.3367/UFNr.0174.200409a.0921

References (157) Cited by (475) Similar articles (20) ↓

  1. B.M. Karnakov, V.D. Mur et alCurrent progress in developing the nonlinear ionization theory of atoms and ionsPhys. Usp. 58 3–32 (2015)
  2. N.B. Delone, V.P. Krainov “Tunneling and barrier-suppression ionization of atoms and ions in a laser radiation fieldPhys. Usp. 41 469–485 (1998)
  3. A.V. Korzhimanov, A.A. Gonoskov et alHorizons of petawatt laser technologyPhys. Usp. 54 9–28 (2011)
  4. S.V. Bulanov, T.Zh. Esirkepov et alRelativistic mirrors in plasmas — novel results and perspectivesPhys. Usp. 56 429–464 (2013)
  5. Ya.B. Zeldovich, V.S. Popov “Electronic structure of superheavy atomsSov. Phys. Usp. 14 673–694 (1972)
  6. Ya.B. Zel’dovich “Interaction of free electrons with electromagnetic radiationSov. Phys. Usp. 18 79–98 (1975)
  7. A.M. Zheltikov “Let there be white light: supercontinuum generation by ultrashort laser pulsesPhys. Usp. 49 605–628 (2006)
  8. N.B. Delone “Multiphoton ionization of atomsSov. Phys. Usp. 18 169–189 (1975)
  9. S.V. Bulanov, Ja.J. Wilkens et alLaser ion acceleration for hadron therapyPhys. Usp. 57 1149–1179 (2014)
  10. R.A. Ganeev “High order harmonics generation in laser surface ablation: current trendsPhys. Usp. 56 772–800 (2013)
  11. V.V. Strelkov, V.T. Platonenko et alAttosecond electromagnetic pulses: generation, measurement, and application. Generation of high-order harmonics of intense laser field for attosecond pulse productionPhys. Usp. 59 425–445 (2016)
  12. A.M. Dykhne, G.L. Yudin “’Jarring’ of a quantum system and the corresponding stimulated transitionsSov. Phys. Usp. 21 549–565 (1978)
  13. F.V. Bunkin, A.E. Kazakov, M.V. Fedorov “Interaction of intense optical radiation with free electrons (nonrelativistic case)Sov. Phys. Usp. 15 416–435 (1973)
  14. L.V. Doronina-Amitonova, I.V. Fedotov et alNeurophotonics: optical methods to study and control the brainPhys. Usp. 58 345–364 (2015)
  15. P.A. Krachkov, R.N. Lee, A.I. Mil’shtein “Quantum electrodynamics processes in the interaction of high-energy particles with atomsPhys. Usp. 59 619–641 (2016)
  16. V.M. Mostepanenko, N.N. Trunov “The Casimir effect and its applicationsSov. Phys. Usp. 31 965–987 (1988)
  17. A.M. Zheltikov, N.I. Koroteev “Coherent four-wave mixing in excited and ionized gas media: four-photon spectrochronography, ellipsometry, and nonlinear-optical imaging of atoms and ionsPhys. Usp. 42 321–351 (1999)
  18. V.P. Krainov, M.B. Smirnov “The evolution of large clusters under the action of ultrashort superintense laser pulsesPhys. Usp. 43 901–920 (2000)
  19. P.A. Krachkov, A.I. Mil’shtein “High-energy electroproduction in the atomic fieldPhys. Usp. 62 340–353 (2019)
  20. I.M. Ternov “Synchrotron radiationPhys. Usp. 38 409–434 (1995)

The list is formed automatically.

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions