Methodological notes

Classical mechanical analogs of relativistic effects

Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina, 4, Moscow, 119991, Russian Federation

The analogs of relativistic effects in classical mechanics, which are observed in the propagation of solitons in solids, are discussed. These effects are described by formulas similar to those of the special theory of relativity, with the speed of sound entering them in lieu of the speed of light. These parallels are shown to be a part of the correspondence between the soliton theory and field theories (in particular, electrodynamics). The effect of Lorentz-invariance breakdown in mechanical systems on dynamic soliton properties is considered. It is shown that supersonic solitons (in particular, dislocations) can propagate in such systems.

Fulltext is available at IOP
PACS: 03.30.+p, 05.45.Yv, 11.15.−q, 61.72.Lk (all)
DOI: 10.1070/PU2004v047n08ABEH001402
Citation: Musienko A I, Manevich L I "Classical mechanical analogs of relativistic effects" Phys. Usp. 47 797–820 (2004)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Мусиенко А И, Маневич Л И «Аналоги релятивистских эффектов в классической механике» УФН 174 861–886 (2004); DOI: 10.3367/UFNr.0174.200408c.0861

References (85) Cited by (8) Similar articles (20) ↓

  1. V.L. Ginzburg, V.P. Frolov “Vacuum in a homogeneous gravitational field and excitation of a uniformly accelerated detector30 1073–1095 (1987)
  2. V.B. Morozov “On the question of the electromagnetic momentum of a charged body54 371–374 (2011)
  3. V.A. Aleshkevich “On special relativity teaching using modern experimental data55 1214–1231 (2012)
  4. B.P. Kosyakov “Radiation in electrodynamics and in Yang-Mills theory35 (2) 135–142 (1992)
  5. V.I. Ritus “Permutation asymmetry of the relativistic velocity addition law and non-Euclidean geometry51 709–721 (2008)
  6. G.B. Malykin “The Sagnac effect: correct and incorrect explanations43 1229 (2000)
  7. V.P. Makarov, A.A. Rukhadze “Force acting on a substance in an electromagnetic field52 937–943 (2009)
  8. Yu.I. Hovsepyan “Some notes on the relativistic Doppler effect41 941–944 (1998)
  9. P.B. Ivanov “On relativistic motion of a pair of particles having opposite signs of masses55 1232–1238 (2012)
  10. J. Gaite “The relativistic virial theorem and scale invariance56 919–931 (2013)
  11. A.A. Logunov “The theory of the classical gravitational field38 179–193 (1995)
  12. A.A. Logunov, Yu.V. Chugreev “Special theory of relativity and the Sagnac effect31 861–864 (1988)
  13. V.I. Ritus “On the difference between Wigner’s and Møller’s approaches to the description of Thomas precession50 95–101 (2007)
  14. M.I. Krivoruchenko “Rotation of the swing plane of Foucault’s pendulum and Thomas spin precession: two sides of one coin52 821–829 (2009)
  15. G.B. Malykin “The relation of Thomas precession to Ishlinskii’s theorem as applied to the rotating image of a relativistically moving body42 505–509 (1999)
  16. I.F. Ginzburg “Unsolved problems in fundamental physics52 495–498 (2009)
  17. A. Loskutov “Dynamical chaos: systems of classical mechanics50 939–964 (2007)
  18. X.-B. Huang “A rigorous minimum-assumption derivation of the Lorentz transformation54 529–532 (2011)
  19. V.I. Ritus “Lagrange equations of motion of particles and photons in the Schwarzschild field58 1118–1123 (2015)
  20. V.I. Ritus “Generalization of the k coefficient method in relativity to an arbitrary angle between the velocity of an observer (source) and the direction of the light ray from (to) a faraway source (observer) at rest63 601–610 (2020)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions