Methodological notes

’Interaction-free’ measurement: possibilities and limitations

Lomonosov Moscow State University, Department of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

The so-called ’interaction-free’ measurement is a very interesting quantum effect that allows discovering the presence of an opaque object in a given spatial domain, with the probability that the object absorbs a photon being, in principle, as low as desired. This probability is bounded from below only by a value of the order of 1/ωτ, where ω is the frequency of light and τ is the measurement time. This corresponds to the average absorbed energy of the order of \hbar/τ. The ’interaction-free’ technique can also be used to measure the coordinate of an object but only under the condition that the object is prepared in a special ’discretized’ quantum state. Such is, for instance, the state of a ponderomotive meter of electromagnetic energy, which, in principle, enables the interaction-free’ measurement of the energy contained in an electromagnetic cavity. Estimations show that with modern experimental equipment and with the help of ’interaction-free’ measurement, single atoms can be registered inside optical cavities.

Fulltext is available at IOP
PACS: 03.65.Ta, 03.67.−a, 42.50.Tv (all)
DOI: 10.1070/PU2004v047n07ABEH001821
Citation: Vyatchanin S P, Khalili F Ya "'Interaction-free' measurement: possibilities and limitations" Phys. Usp. 47 705–716 (2004)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Вятчанин С П, Халили Ф Я «Измерение „без взаимодействия“: возможности и ограничения» УФН 174 765–777 (2004); DOI: 10.3367/UFNr.0174.200407e.0765

References (19) ↓ Cited by (2) Similar articles (20)

  1. Elitzur A, Vaidman L Found. Phys. 23 987 (1993)
  2. Boumeister D, Ekert A, Tsailinger A Fizika Kvantovoi Informatsii (M.: Postmarket, 2002)
  3. White A G et al. Phys. Rev. A 58 605 (1998)
  4. Kwiat P G et al. Phys. Rev. Lett. 83 4725 (1999)
  5. Kwiat P G et al. Phys. Rev. Lett. 74 4763 (1995)
  6. du Marchie van Voorthuysen E H Am. J. Phys. 64 1504 (1996)
  7. Hafner M, Summhammer J Phys. Lett. A 235 563 (1997)
  8. Braginskii V B, Vorontsov Yu I, Khalili F Ya Zh. Eksp. Teor. Fiz. 73 1340 (1977)
  9. fon Neiman I Matematicheskie Osnovy Kvantovoi Mekhaniki (M.: Nauka, 1964)
  10. Braginsky V B, Khalili F Ya Quantum Measurement (Cambridge: Cambridge Univ. Press, 1992)
  11. Menskii M B Kvantovye Izmereniya i Dekogerentsiya (M.: Fizmatlit, 2001)
  12. Braginsky V B et al. Phys. Rev. D 67 082001 (2003)
  13. Scully M O, Englert B-G, Walther H Nature 351 111 (1991)
  14. Luis A, Sánchez-Soto L L Phys. Rev. Lett. 81 4031 (1998)
  15. Englert B-G, Scully M O, Walther H J. Mod. Opt. 47 2213 (2000)
  16. Ye J, Vernooy D W, Kimble H J quant-ph/9908007
  17. Vorontsov Yu I Vestnik Mosk. Univ. Ser. 3. Fiz. Astron. (6) 7 (1998)
  18. Vorontsov Yu I Vestnik Mosk. Univ. Cer. 3. Fiz. Astron. (1) 23 (1999)
  19. Vorontsov Yu N Teoriya i Metody Makroskopicheskikh Izmerenii (M.: Nauka, 1989)

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions