Issues

 / 

2003

 / 

September

  

From the history of physics


Topological phase in classical mechanics

 a,  b
a Institute of Applied Physics, Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation
b V. I. Kuznetsov Federal State Unitary Enterprise Research Institute of Applied Mechanics, ul. Aviamotornaya 55, Moscow, 111123, Russian Federation

The historical development of the concept of the topological phase in classical mechanics from the mid-19th century to the present is discussed. There are three stages to be recognized in this period. The first, the mid-19th century stage, is concerned with studying the kinematics of rigid body rotation and includes such milestone developments as the Euler theorem on finite rotation of rigids, Gauss formula for the sum excess of the angles of a spherical polygon, Rodrigues’s proof of the noncommutativity property of two finite rotations, and, finally, Hamilton’s Lectures on Quaternions where the solid angle theorem is formulated and proved. The experimental discovery of the nonholonomic error of gyroscopes and its exhaustive explanation by A Yu Ishlinskii represent the second stage. The third stage, which started in the 1980s, has witnessed the rediscovery of the nonholonomic effect in the framework of Hamiltonian formalism and is dominated by the study of how the topological phase — or an additional angle — forms in a mechanical system being treated in action-angle variables.

Text can be downloaded in Russian. English translation is available on IOP Science.
PACS: 01.65.+g, 03.65.Vf, 45.40.Cc (all)
DOI: 10.1070/PU2003v046n09ABEH001635
URL: https://ufn.ru/en/articles/2003/9/d/
Citation: Malykin G B, Kharlamov S A "Topological phase in classical mechanics" Phys. Usp. 46 957–965 (2003)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Малыкин Г Б, Харламов С А «Топологическая фаза в классической механике» УФН 173 985–994 (2003); DOI: 10.3367/UFNr.0173.200309e.0985

© 1918–2019 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions