Issues

 / 

2003

 / 

October

  

Methodological notes


Critical velocities c/sqrt{3} and c/sqrt{2} in the general theory of relativity

, ,
Russian Federation State Scientific Center A.I. Alikhanov Institute ofTheoretical and Experimental Physics, ul. Bolshaya Cheremushkinskaya 25, Moscow, 117259, Russian Federation

We consider a few thought experiments of radial motion of massive particles in the gravitational fields outside and inside various celestial bodies: Earth, Sun, black hole. All other interactions except gravity are disregarded. For the outside motion there exists a critical value of coordinate velocity c/sqrt{3}: particles with v < vc are accelerated by the field like Newtonian apples, and particles with v > vc are decelerated like photons. Particles moving inside a body with constant density have no critical velocity; they are always accelerated. We consider also the motion of a ball inside a tower, when it is thrown from the top (bottom) of the tower and after elastically bouncing at the bottom (top) comes back to the original point. The total time of flight is the same in these two cases if the initial proper velocity v0 is equal to c/sqrt{2}.

Text can be downloaded in Russian. English translation is available on IOP Science.
PACS: 03.30.+p, 45.50.−j (all)
DOI: 10.1070/PU2003v046n10ABEH001661
URL: https://ufn.ru/en/articles/2003/10/d/
Citation: Blinnikov S I, Okun L B, Vysotskii M I "Critical velocities c/sqrt{3} and c/sqrt{2} in the general theory of relativity" Phys. Usp. 46 1099–1103 (2003)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

:   ,   ,    « c/31/2  c/21/2  » 173 1131–1136 (2003); DOI: 10.3367/UFNr.0173.200310e.1131

References (12) Cited by (4) Similar articles (20) ↓

  1. V.I. Ritus “On the difference between Wigner’s and Møller’s approaches to the description of Thomas precession50 95–101 (2007)
  2. V.I. Ritus “Permutation asymmetry of the relativistic velocity addition law and non-Euclidean geometry51 709–721 (2008)
  3. P.B. Ivanov “On relativistic motion of a pair of particles having opposite signs of masses55 1232–1238 (2012)
  4. G.B. Malykin “The Sagnac effect: correct and incorrect explanations43 1229 (2000)
  5. Yu.I. Hovsepyan “Some notes on the relativistic Doppler effect41 941–944 (1998)
  6. M.I. Krivoruchenko “Rotation of the swing plane of Foucault’s pendulum and Thomas spin precession: two sides of one coin52 821–829 (2009)
  7. X.-B. Huang “A rigorous minimum-assumption derivation of the Lorentz transformation54 529–532 (2011)
  8. V.I. Ritus “Lagrange equations of motion of particles and photons in the Schwarzschild field58 1118–1123 (2015)
  9. G.B. Malykin “The relation of Thomas precession to Ishlinskii’s theorem as applied to the rotating image of a relativistically moving body42 505–509 (1999)
  10. A.A. Logunov “The theory of the classical gravitational field38 179–193 (1995)
  11. V.A. Aleshkevich “On special relativity teaching using modern experimental data55 1214–1231 (2012)
  12. G.B. Malykin “Sagnac effect in ring lasers and ring resonators. How does the refraction index of the optical medium influence the sensitivity to rotation?57 714–720 (2014)
  13. V.L. Ginzburg, V.P. Frolov “Vacuum in a homogeneous gravitational field and excitation of a uniformly accelerated detector30 1073–1095 (1987)
  14. S.I. Syrovatskii “On the problem of the ’retardation’ of the relativistic contraction of moving bodies19 273–274 (1976)
  15. A.I. Musienko, L.I. Manevich “Classical mechanical analogs of relativistic effects47 797–820 (2004)
  16. G.B. Malykin “Para-Lorentz transformations52 263–266 (2009)
  17. V.P. Makarov, A.A. Rukhadze “Force acting on a substance in an electromagnetic field52 937–943 (2009)
  18. V.B. Morozov “On the question of the electromagnetic momentum of a charged body54 371–374 (2011)
  19. V.A. Saranin “Electrostatic oscillators55 700–708 (2012)
  20. J. Gaite “The relativistic virial theorem and scale invariance56 919–931 (2013)

The list is formed automatically.

© 1918–2019 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions