Issues

 / 

2002

 / 

October

  

Reviews of topical problems


Mechanism of anomalous ion generation in vacuum arcs

 a,  b
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, ul. Amundsena 106, Ekaterinburg, 620016, Russian Federation

A model for the generation of an ion flow in a vacuum arcs is proposed, based upon the analysis of electron processes. It is shown that the charge states and the velocities of directed motion of the ions result from cathode microsections being explosively destroyed by Joule heating with a high-density current. In this case, the ionization processes occur within a narrow (of the order of a micrometer) region near the cathode, and thereafter the ionic composition of the plasma remains unchanged. For arc currents of up to a kiloampere, a current increase simply increases the number of simultaneously operating ectons, thus explaining the weak experimental dependence of ion flow parameters on the vacuum arc current.

Fulltext pdf (1.3 MB)
Fulltext is also available at DOI: 10.1070/PU2002v045n10ABEH001247
PACS: 52.40.Mj, 52.75.Pv, 52.80.Mg, 52.80.Vp (all)
DOI: 10.1070/PU2002v045n10ABEH001247
URL: https://ufn.ru/en/articles/2002/10/a/
000181011300001
Citation: Mesyats G A, Barengol’ts S A "Mechanism of anomalous ion generation in vacuum arcs" Phys. Usp. 45 1001–1018 (2002)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Месяц Г А, Баренгольц С А «Механизмы генерации аномальных ионов вакуумной дуги» УФН 172 1113–1130 (2002); DOI: 10.3367/UFNr.0172.200210a.1113

References (87) Cited by (78) ↓ Similar articles (20)

  1. Amrenova A U, Zhukeshov A M et al Jour (3) 83 (2024)
  2. Barengolts S A, Mesyats G A Uspekhi Fizicheskikh Nauk 193 751 (2023)
  3. [Barengolts S A, Mesyats G A Phys. Usp. 66 704 (2023)]
  4. Nikolaev A G, Frolova V P et al Russ Phys J 65 1613 (2023)
  5. Barengolts S A, Hwangbo D, Kajita S Nuclear Materials And Energy 37 101541 (2023)
  6. Ryan A, Bilek M et al Plasma Sources Sci. Technol. 31 085003 (2022)
  7. Wang L, Zhang X et al IEEE Trans. Plasma Sci. 49 401 (2021)
  8. Wang L, Zhang X et al J. Phys. D: Appl. Phys. 54 215202 (2021)
  9. Shmelev D L, Uimanov I V et al 2020 29th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), (2021) p. 268
  10. Barengolts S A, Hwangbo D et al Nucl. Fusion 60 044001 (2020)
  11. Golizadeh M, Anders A et al 127 (11) (2020)
  12. Porshyn V 27 (7) (2020)
  13. Savkin K, Oks E, Yushkov G Plasma Sources Sci. Technol. 28 065008 (2019)
  14. Chernogor A V, Blinkov I V et al Tech. Phys. Lett. 45 75 (2019)
  15. Zhang X, Wang L et al J. Phys. D: Appl. Phys. 52 035204 (2019)
  16. Gashkov M A, Mesyats G A, Zubarev N M J. Phys.: Conf. Ser. 1147 012125 (2019)
  17. Usmanov R A, Amirov R Kh et al 25 (6) (2018)
  18. Hwangbo D, Kajita Sh et al Contributions To Plasma Physics 58 608 (2018)
  19. Abubakirov E B, Denisenko A N et al Tech. Phys. Lett. 44 857 (2018)
  20. Kolikov V, Bogomaz A, Budin A Springer Series On Atomic, Optical, And Plasma Physics Vol. Powerful Pulsed Plasma GeneratorsIntroduction101 Chapter 1 (2018) p. 1
  21. Asiunin V I, Davydov S G et al Plasma Phys. Rep. 44 605 (2018)
  22. Tsventoukh M M 25 (5) (2018)
  23. Cunha M D, Kaufmann H T C et al IEEE Trans. Plasma Sci. 45 2060 (2017)
  24. Kaufmann H T C, Cunha M D et al 122 (16) (2017)
  25. Zeltser I, Karpov A et al Coatings 7 75 (2017)
  26. Agafonov A V, Tarakanov V P et al High Temp 55 672 (2017)
  27. Viktorov M E, Mansfeld D A et al Plasma Phys. Control. Fusion 59 075001 (2017)
  28. Gashkov M A, Zubarev N M et al J. Exp. Theor. Phys. 122 776 (2016)
  29. Dukhopel’nikov D V, Kirillov D V, Bulychev V S Polym. Sci. Ser. D 9 238 (2016)
  30. Zeltser I A, Gurov V S et al J. Synch. Investig. 10 1106 (2016)
  31. Blinkov I V, Volkhonskii A O et al Tech. Phys. Lett. 42 528 (2016)
  32. Tsygvintsev I P, Krukovskiy A Yu et al Math Models Comput Simul 8 595 (2016)
  33. Kaufmann H T C, Cunha M D et al 2016 27th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), (2016) p. 1
  34. Shmelev D L, Barengolts S A, Savkin K P Tech. Phys. Lett. 41 500 (2015)
  35. Mesyats G A, Zubarev N M 117 (4) (2015)
  36. Zherlitcyn A A, Kovalchuk B M J. Phys.: Conf. Ser. 652 012064 (2015)
  37. Shmelev D L, Barengolts S A, Shchitov N N Tech. Phys. Lett. 40 783 (2014)
  38. Benilov M S, Cunha M D et al IEEE Trans. Plasma Sci. 41 1950 (2013)
  39. Tsventoukh M M, Barengolts S A et al Tech. Phys. Lett. 39 933 (2013)
  40. Bashutin O A, Alkhimova M A et al Plasma Phys. Rep. 39 900 (2013)
  41. Mesyats G A, Zubarev N M 113 (20) (2013)
  42. Mesyats G A IEEE Trans. Plasma Sci. 41 676 (2013)
  43. Chkhalo N I, Golubev S V et al J. Micro/Nanolith. MEMS MOEMS 11 021123-1 (2012)
  44. Nikolaev A G, Savkin K P et al 83 (2) (2012)
  45. Tsventoukh M M, Mesyats G A, Barengolts S A 2012 25th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), (2012) p. 297
  46. Bashutin O A, Vovchenko E D et al Plasma Phys. Rep. 38 235 (2012)
  47. Benilov M S, Benilova L G et al 2012 25th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), (2012) p. 317
  48. Belik V D, Litvin R V, Kovalchenko M S Powder Metall Met Ceram 50 698 (2012)
  49. Yushkov G Yu, Savkin K P et al Plasma Sci. Technol. 13 596 (2011)
  50. Batrakov A V, Popov S A et al IEEE Trans. Plasma Sci. 39 1296 (2011)
  51. Londer Ya I, Ulyanov K N High Temp 49 315 (2011)
  52. Gurevich A V, Mesyats G A et al Physics Letters A 375 2845 (2011)
  53. Vodopyanov A V, Golubev S V et al Bull. Russ. Acad. Sci. Phys. 75 64 (2011)
  54. Tsventoukh M M, Mesyats G A, Barengolts S A 24th ISDEIV 2010, (2010) p. 411
  55. Wanninayake W M R R, Kobayashi K et al IEEJ Transactions Elec Engng 5 317 (2010)
  56. Korobkin Yu V, Paperny V L et al Plasma Phys. Control. Fusion 50 065002 (2008)
  57. Vodopyanov A V, Golubev S V et al Jetp Lett. 88 95 (2008)
  58. Vodopyanov A V, Golubev S V et al 79 (2) (2008)
  59. Anders A Springer Series On Atomic, Optical, And Plasma Physics Vol. Cathodic ArcsThe Physics of Cathode Processes50 Chapter 3 (2008) p. 75
  60. Barengolts S A, Mesyats G A, Tsventoukh M M J. Exp. Theor. Phys. 107 1039 (2008)
  61. Almazova K I, Borovkov V V Tech. Phys. 52 1434 (2007)
  62. Krinberg I A, Matafonov G K Tech. Phys. 51 504 (2006)
  63. Anders A, Oks E M et al Tech. Phys. 51 1311 (2006)
  64. Oks E M, Savkin K P et al 77 (3) (2006)
  65. Ouchi M, Yanagidaira T, Tsuruta K 2006 International Symposium on Discharges and Electrical Insulation in Vacuum, (2006) p. 351
  66. Zverev E A, Krasov V I et al Czech J Phys 56 B324 (2006)
  67. Krinberg I A Tech. Phys. Lett. 31 261 (2005)
  68. Anders A, Oks E M et al IEEE Trans. Plasma Sci. 33 1532 (2005)
  69. Vodopyanov A V, Golubev S V et al Tech. Phys. 50 1207 (2005)
  70. Pukha V E Phys. Solid State 47 595 (2005)
  71. Lomino N S, Ovcharenko V D, Andreev A A IEEE Trans. Plasma Sci. 33 1626 (2005)
  72. Zverev E A Plasma Phys. Rep. 31 843 (2005)
  73. Anders A, Oks E M, Yushkov G Yu 86 (21) (2005)
  74. Brown I, Oks E IEEE Trans. Plasma Sci. 33 1931 (2005)
  75. Vol. XXIst International Symposium on Discharges and Electrical Insulation in Vacuum, 2004. Proceedings. ISDEIV.Measurement of total ion flux in vacuum are dischargesE.M. OksA. Anders1 (2004) p. 272
  76. Andreev A A XXIst International Symposium on Discharges and Electrical Insulation in Vacuum, 2004. Proceedings. ISDEIV., (2004) p. 245
  77. Smirnov B M Uspekhi Fizicheskikh Nauk 173 609 (2003)
  78. Shkol’nik S M IEEE Trans. Plasma Sci. 31 832 (2003)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions