Issues

 / 

2001

 / 

May

  

Methodological notes


Current status of the Kondo problem

 a, b,  c
a Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 119334, Russian Federation
b Max-Planck Institute of the Physics of Complex Systems, Dresden, Germany
c Landau Institute for Theoretical Physics, Russian Academy of Sciences, prosp. Akademika Semenova 1A, Chernogolovka, Moscow Region, 142432, Russian Federation

It is shown that at zero temperature the magnetic field μH"TK does not move the system from the strong coupling to the weak coupling regime. As a result, the average of the impurity spin approaches its saturation value as a power of the small parameter (2TKH)². The study of the high-temperature expansion of the free energy shows that the Kondo problem contains at least two energy scales and that these scales are separated by the coupling constant. The Hamiltonian of the Kondo problem is not renormalizable.

Fulltext pdf (165 KB)
Fulltext is also available at DOI: 10.1070/PU2001v044n05ABEH000916
PACS: 72.10.Fk, 72.15.Qm, 75.20.Hr (all)
DOI: 10.1070/PU2001v044n05ABEH000916
URL: https://ufn.ru/en/articles/2001/5/d/
000170938900004
Citation: Ovchinnikov Yu N, Dyugaev A M "Current status of the Kondo problem" Phys. Usp. 44 541–545 (2001)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Овчинников Ю Н, Дюгаев А М «Современное состояние проблемы Кондо» УФН 171 565–570 (2001); DOI: 10.3367/UFNr.0171.200105d.0565

References (12) Cited by (2) Similar articles (12) ↓

  1. M.Ya. Agre “Multipole expansions in magnetostaticsPhys. Usp. 54 167–180 (2011)
  2. A.V. Vashkovsky, E.H. Lock “On the relationship between magnetostatic wave energy and dispersion characteristics in ferrite structuresPhys. Usp. 54 281–290 (2011)
  3. M.V. Davidovich “On energy and momentum conservation laws for an electromagnetic field in a medium or at diffraction on a conducting platePhys. Usp. 53 595–609 (2010)
  4. Yu.A. Kosevich, L.I. Manevitch, E.L. Manevitch “Vibrational analogue of nonadiabatic Landau — Zener tunneling and a possibility for the creation of a new type of energy trapPhys. Usp. 53 1281–1286 (2010)
  5. B.M. Smirnov “Clusters with close packingSov. Phys. Usp. 35 (1) 37–48 (1992)
  6. Yu.M. Tsipenyuk “Zero point energy and zero point oscillations: how they are detected experimentallyPhys. Usp. 55 796–807 (2012)
  7. V.K. Ignatovich “The neutron Berry phasePhys. Usp. 56 603–604 (2013)
  8. N.A. Vinokurov “Analytical mechanics and field theory: derivation of equations from energy conservationPhys. Usp. 57 593–596 (2014)
  9. A.G. Zagorodnii, A.V. Kirichok, V.M. Kuklin “One-dimensional modulational instability models of intense Langmuir plasma oscillations using the Silin—Zakharov equationsPhys. Usp. 59 669–688 (2016)
  10. Yu.I. Vorontsov “The uncertainty relation between energy and time of measurementSov. Phys. Usp. 24 150–158 (1981)
  11. V.I. Ritus “Finite value of the bare charge and the relation of the fine structure constant ratio for physical and bare charges to zero-point oscillations of the electromagnetic field in a vacuumPhys. Usp. 65 468–486 (2022)
  12. G.S. Golitsyn “A N Kolmogorov's 1934 paper is the basis for explaining the statistics of natural phenomena of the macrocosmPhys. Usp. 67 80–90 (2024)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions