Issues

 / 

2001

 / 

February

  

Reviews of topical problems


Diffuse martensitic transitions and the plasticity of crystals with a shape memory effect


Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation

The mechanism of diffusion-free (thermoelastic) martensitic transitions in solids is theoretically examined using a thermodynamic approach together with a self-consistent-field order parameter model. Based on the resulting equations, a theory of smeared martensitic transitions is constructed as a kinetic equilibrium theory of heterophase structures which takes into account heterogeneous martensite nucleation and the interaction of interphase boundaries with various types of structural defects in real materials. An extensive comparison is made between the theoretical predictions and the experimental data on thermoelastic martensitic transformations in alloys with shape memory. The universal nature of the theory of diffuse first-order phase transitions is illustrated by applying it to ferroelectric and ferroelastic transitions in some classical ferroelectric and high-temperature superconductors.

Text can be downloaded in Russian. English translation is available on IOP Science.
PACS: 64.10.+h, 64.70.Kb (all)
DOI: 10.1070/pu2001v044n02ABEH000760
URL: https://ufn.ru/en/articles/2001/2/c/
Citation: Malygin G A "Diffuse martensitic transitions and the plasticity of crystals with a shape memory effect" Phys. Usp. 44 173 (2001)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Малыгин Г А «Размытые мартенситные переходы и пластичность кристаллов с эффектом памяти формы» УФН 171 187–212 (2001); DOI: 10.3367/UFNr.0171.200102c.0187

References (181) Cited by (35) ↓ Similar articles (20)

  1. Nasibullin R T, Kveglis L I et al Chemical Physics Letters 716 199 (2019)
  2. Tikhomirova K A Comp. Contin. Mech. 9 192 (2016)
  3. Dolgusheva E B, Trubitsin V Yu Computational Materials Science 84 23 (2014)
  4. Egorov V M, Marikhin V A, Myasnikova L P Polym. Sci. Ser. A 53 906 (2011)
  5. Kashchenko M P, Chashchina V G Uspekhi Fizicheskikh Nauk 181 345 (2011)
  6. Malygin G A Uspekhi Fizicheskikh Nauk 181 1129 (2011)
  7. Nikolaev V I, Yakushev P N et al Tech. Phys. Lett. 36 914 (2010)
  8. Lin É É Phys. Solid State 52 153 (2010)
  9. Nikolaev V I, Egorov V M et al Phys. Solid State 52 2419 (2010)
  10. Nikitin A N, Vasin R N, Rodkin M V Izv., Phys. Solid Earth 45 338 (2009)
  11. Egorov V M, Marikhin V A et al Phys. Solid State 51 2129 (2009)
  12. Malygin G A Phys. Solid State 51 1694 (2009)
  13. Malygin G A Tech. Phys. 54 1782 (2009)
  14. Egorov V M, Marikhin V A, Myasnikova L P Phys. Solid State 50 126 (2008)
  15. Malygin G A Phys. Solid State 50 1538 (2008)
  16. Malygin G A Tech. Phys. 52 281 (2007)
  17. Egorov V M, Marikhin V A, Myasnikova L P Polym. Sci. Ser. A 49 1366 (2007)
  18. Nikolaev V I, Pul’nev S A et al Phys. Solid State 49 1878 (2007)
  19. Egorov V M, Marikhin V A, Myasnikova L P Polym. Sci. Ser. A 48 1270 (2006)
  20. Pul’nev S A, Nikolaev V I et al Tech. Phys. 51 1004 (2006)
  21. Egorov V M Phys. Solid State 47 1993 (2005)
  22. Arabajian N L, Serdobintsev V I et al Journal Of Alloys And Compounds 390 1 (2005)
  23. Imashev R N Phys. Solid State 47 1944 (2005)
  24. Malygin G A, Khusainov M A Tech. Phys. 49 1301 (2004)
  25. Aliev R A, Klimov V A Phys. Solid State 46 532 (2004)
  26. Chigvinadze J G, Serdobintsev V I, Tavkhelidze V M Phys. Stat. Sol. (a) 201 1471 (2004)
  27. Malygin G A Phys. Solid State 45 2342 (2003)
  28. Malygin G A Phys. Solid State 45 345 (2003)
  29. Malygin G A Tech. Phys. 48 329 (2003)
  30. Malygin G A Phys. Solid State 45 1566 (2003)
  31. Malygin G A Phys. Solid State 45 1784 (2003)
  32. Malygin G A Phys. Solid State 44 2171 (2002)
  33. Korobov A I, Ékonomov A N Acoust. Phys. 48 564 (2002)
  34. Malygin G A Phys. Solid State 43 1989 (2001)
  35. Malygin G A Phys. Solid State 43 1339 (2001)

© 1918–2019 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions