Issues

 / 

2001

 / 

November

  

From the current literature


Characteristics of hydride-like segregates of hydrogen at dislocations in palladium


G.V. Kurdyumov Institite of Metal Science and Physics, State Research Centre of the Russian Federation, I.P. Bardin Central Research Institute of Ferrous Metallurgy, 2-ya Baumanskaya ul. 9/23, Moscow, 105005, Russian Federation

On the basis of multifactor analysis of the most representative experimental data on the solubility, electrical resistance, and diffusivity of hydrogen in palladium specimens with high and low dislocation densities, it has been shown that the structure, composition, diameter (up to several nm), contribution to electrical resistance, thermodynamic and diffusion characteristics of hydride-like segregates at dislocations in palladium can vary in wide limits depending on the concentration and thermodynamic activity of hydrogen dissolved in the normal lattice of the metal. The formation of hydride-like segregation phases at dislocations occurs at high degrees of undersaturation of the solid solutions with respect to the hydride precipitation in the normal lattice of palladium. This means that a specific phase diagram can be considered for a ’hydrogen — near-dislocation segregation Pd nanoregions’ system, in comparison with the conventional hydrogen-palladium phase diagram. The results obtained can be used for the description of the apparent concentration and distribution of hydrogen between the normal crystal lattice and defect regions in palladium specimens produced using different processing and treatment methods. In particular, the results can be used for the interpretation of hydrogen influence on the physical and mechanical properties of the materials, and also for revealing the micromechanisms and ways of the optimization of regimes of thermal-hydrogen treatment and governing hydrogen-induced transformation hardening of palladium and palladium-based alloys.

Fulltext pdf (520 KB)
Fulltext is also available at DOI: 10.1070/PU2001v044n11ABEH000973
PACS: 61.72.Lk, 61.72.Ss, 64.75.+g, 66.30.Jt (all)
DOI: 10.1070/PU2001v044n11ABEH000973
URL: https://ufn.ru/en/articles/2001/11/d/
000174555600004
Citation: Nechaev Yu S "Characteristics of hydride-like segregates of hydrogen at dislocations in palladium" Phys. Usp. 44 1189–1198 (2001)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Нечаев Ю С «Характеристики гидридоподобных сегрегаций водорода на дислокациях в палладии» УФН 171 1251–1261 (2001); DOI: 10.3367/UFNr.0171.200111e.1251

References (35) ↓ Cited by (20) Similar articles (3)

  1. Darken L S, Smith R P Corrosion 5 1 (1949)
  2. Oriani R A Acta Metall. 18 147 (1970)
  3. Kolachev B A Metalloved. Termich. Obrabotka Metallov (3) 3 (1999)
  4. Ephimenko S P, Nechaev Yu S et al. Fiz. Khim. Obrabotki Mater. (5) 101 (1997)
  5. Kedzierzawski P, in Hydrogen Degradation of Ferrous Alloys (Eds R A Oriani, J P Hirth, M Smialowski, Park Ridge, N.J.: Noyes Publ., 1985) p. 271
  6. Kirchheim R Prog. Mater. Sci. 32 261 (1988)
  7. McNabb A, Foster P K Trans. Met. Soc. AIME 227 618 (1963)
  8. Kumnick A J, Johnson H H Acta Metall. 28 33 (1980)
  9. Nechaev Yu S, Filippov G Ya Perspektivnye Mater. (2) 63 (2000)
  10. Nechaev Yu S, Filippov G A Defect Diffus. Forum 194-199 1099 (2001)
  11. Nechaev Yu S, Ephimenko S P Met. Phys. Adv. Technol. 19 (2) 225 (2001)
  12. Nechaev Yu S Met. Phys. Adv. Technol. 19 (3) 533 (2001)
  13. Ljakishev N P et al., in The Abstract booklet of the International workshop on Grain Boundary Diffusion and Grain Boundary Segregation (Moscow, Russia, 1997)
  14. Nechaev Yu S Defect Diffus. Forum 66-69 881 (1989)
  15. Nechaev Yu S, Egziabher K H G Phys. Status Solidi A 106 399 (1988)
  16. Flanagan T B et al. J. Less-Common Met. 49 13 (1976)
  17. Flanagan T B, Lynch J F J. Less-Common Met. 49 25 (1976)
  18. Kirchheim R Acta Metall. 29 835 (1981)
  19. Kirchheim R Acta Metall. 29 845 (1981)
  20. Kirchheim R Scripta Metall. 14 905 (1980)
  21. Sicking G, Glugla M, Huber B Ber. Bunsenges. Phys. Chem. 87 418 (1983)
  22. Hirth J P, Lothe J Theory of Dislocations (New York: McGraw-Hill, 1967)
  23. Andreev L A, Nechaev Yu S et al. Phys. Status Solidi B 163 221 (1991)
  24. Tyson W R J. Less-Common Met. 70 209 (1980)
  25. Nechaev Yu S, Mukhina L V J. Phys. III (Paris) 3 179 (1993)
  26. Gabidulin R M, Kolachev B A, Krasnova E V Izv. Vyssh. Ucheb. Zaved. Tsvetnaya Metall. (6) 98 (1978)
  27. Friedel J Dislocations (Oxford: Pergamon Press, 1964)
  28. Wert C A, in Hydrogen in Metals (Topics in Applied Physics, Vol. 29, Eds G Alefeld, J Völkl) Vol. 2 (Berlin: Springer-Verlag, 1978) p. 305
  29. Gol’tsov V A, in Vzaimodeîstvie Vodoroda s Metallami (Hydrogen Interaction with Metals, Ed. A P Zakharov, Moscow: Nauka, 1987) p. 264
  30. Leblonds J B, Dubois D Acta Metall. 31 1459 (1983)
  31. Sakamoto Y Trans. Jpn. Inst. Metals 25 244 (1984)
  32. Kirchheim R Defect Diffus. Forum 143-147 911 (1997)
  33. Bekman I N, in Vzaimodeîstvie Vodoroda s Metallami (Hydrogen Interaction with Metals, Ed. A P Zakharov, Moscow: Nauka, 1987) p. 143
  34. Mortlock A J Acta Metall. 8 132 (1960)
  35. Katlinskiî V M Izv. Akad. Nauk SSSR Ser. Neorg. Mater. 14 (9) 1674 (1978)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions