Reviews of topical problems

Quasi-two-dimensional turbulence

 a,  b
a A M Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Pyzhevskii per. 3, Moscow, 109017, Russian Federation
b Department of Mathematics, Case Western Reserve University, Cleveland, Ohio, USA

We review the results of numerical and experimental studies in quasi-two-dimensional (Q2D) turbulence. We demonstrate that theoretical energy spectra with slopes-5/3 and-3 (Kraichnan-Batchelor-Leith) can be observed only for a special set of external parameters. The bottom drag, beta effect, finite Rossby-Obukhov radius or vertical stratification, which distinguish geophysical Q2D turbulence from its purely 2D counterpart, determine the organization of a Q2D flow on a large scale. Since the spectral energy flux in 2D turbulence is directed upscale, the bottom friction takes on a special role. In the absence of bottom drag the energy condenses on the largest resolvable scale and flow equilibration is not attained.

Fulltext pdf (1.3 MB)
Fulltext is also available at DOI: 10.1070/PU2000v043n09ABEH000782
PACS: 47.27.Ak, 47.27.Eq, 92.10.−c, 92.90.+x (all)
DOI: 10.1070/PU2000v043n09ABEH000782
Citation: Danilov S D, Gurarie D "Quasi-two-dimensional turbulence" Phys. Usp. 43 863–900 (2000)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Данилов С Д, Гурарий Д «Квазидвумерная турбулентность» УФН 170 921–968 (2000); DOI: 10.3367/UFNr.0170.200009a.0921

References (156) Cited by (96) Similar articles (20) ↓

  1. F.V. Dolzhanskii, V.A. Krymov, D.Yu. Manin “Stability and vortex structures of quasi-two-dimensional shear flows33 (7) 495–520 (1990)
  2. M.V. Nezlin “Rossby solitons (Experimental investigations and laboratory model of natural vortices of the Jovian Great Red Spot type)29 807–842 (1986)
  3. M.I. Rabinovich “Stochastic self-oscillations and turbulence21 443–469 (1978)
  4. A.S. Monin, Yu.A. Shishkov “Climate as a problem of physics43 381–406 (2000)
  5. A.B. Medvinskii, S.V. Petrovskii et alSpatio-temporal pattern formation, fractals, and chaos in conceptual ecological models as applied to coupled plankton-fish dynamics45 27–57 (2002)
  6. K.V. Koshel, S.V. Prants “Chaotic advection in the ocean49 1151–1178 (2006)
  7. L.Kh. Ingel, M.V. Kalashnik “Nontrivial features in the hydrodynamics of seawater and other stratified solutions55 356–381 (2012)
  8. V.V. Alekseev, A.M. Gusev “Free convection in geophysical processes26 906–922 (1983)
  9. A.S. Monin “On the nature of turbulence21 429–442 (1978)
  10. M.I. Tribel’skii “Short-wavelength instability and transition to chaos in distributed systems with additional symmetry40 159–180 (1997)
  11. V.I. Klyatskin, D. Gurarie “Coherent phenomena in stochastic dynamical systems42 165 (1999)
  12. L.A. Ostrovskii, S.A. Rybak, L.Sh. Tsimring “Negative energy waves in hydrodynamics29 1040–1052 (1986)
  13. V.F. Kop’ev, S.A. Chernyshev “Vortex ring oscillations, the development of turbulence in vortex rings and generation of sound43 663–690 (2000)
  14. A.D. Chernin “Cosmic vacuum44 1099–1118 (2001)
  15. V.G. Plekhanov “Isotopic and disorder effects in large exciton spectroscopy40 553–579 (1997)
  16. A.M. Bykov, I.N. Toptygin “Particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods)36 (11) 1020–1052 (1993)
  17. B.M. Smirnov “Systems of atoms with a short-range interaction35 (12) 1052–1079 (1992)
  18. V.E. Zakharov, V.I. Karas’ “Nonequilibrium Kolmogorov-type particle distributions and their applications56 49–78 (2013)
  19. A.A. Chernyshov, K.V. Karelsky, A.S. Petrosyan “Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmas57 421–452 (2014)
  20. S.N. Gurbatov, A.I. Saichev, I.G. Yakushkin “Nonlinear waves and one-dimensional turbulence in nondispersive media26 857–876 (1983)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions