Issues

 / 

2000

 / 

December

  

Reviews of topical problems


Dispersion of electromagnetic waves in stratified and nonstationary media (exactly solvable models)

 a, b
a Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation
b Space Research Institute, Russian Academy of Sciences, ul. Profsoyuznaya 84/32, Moscow, 117997, Russian Federation

The propagation and reflection of electromagnetic waves in stratified and nonstationary media are considered on the basis of a unified approach, using exact analytical solutions of Maxwell’s equations. In this approach, the spatial structure of a wave field in an inhomogeneous medium is presented as a function of the optical path length of the wave (a one-dimensional problem). These solutions predict strong dispersion of both normal and abnormal types to occur in a given medium, the magnitude of dispersion depending on the gradient and curvature of the continuous smooth profile of the material’s inhomogeneous dielectric susceptibility ε(z). The effect of such a nonlocal dispersion on the reflection of waves is described by generalized Fresnel formulas. Exactly solvable models are introduced to describe the effects of both monotonic and oscillatory ε(t) dependences on the wave dispersion due to the finite relaxation time of the dielectric constant.

Text can be downloaded in Russian. English translation is available on IOP Science.
PACS: 03.65.Ge, 03.65.Sq, 42.25.Bs, 42.25.Gy (all)
DOI: 10.1070/PU2000v043n12ABEH000827
URL: https://ufn.ru/en/articles/2000/12/b/
Citation: Shvartsburg A B "Dispersion of electromagnetic waves in stratified and nonstationary media (exactly solvable models)" Phys. Usp. 43 1201–1228 (2000)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Шварцбург А Б «Дисперсия электромагнитных волн в слоистых и нестационарных средах (точно решаемые модели)» УФН 170 1297–1324 (2000); DOI: 10.3367/UFNr.0170.200012b.1297

References (45) Cited by (28) ↓ Similar articles (20)

  1. Krapez J -C International Journal Of Thermal Sciences 136 182 (2019)
  2. Shagaev V V J. Commun. Technol. Electron. 63 111 (2018)
  3. Krapez Je-C, Osiński M et al Physics and Simulation of Optoelectronic Devices XXVI, (2018) p. 35
  4. Kartashov I N, Kuzelev M V J. Commun. Technol. Electron. 63 922 (2018)
  5. Krapez J -C J. Opt. Soc. Am. A 35 1039 (2018)
  6. Kartashov I N, Kuzelev M V Tech. Phys. 63 1151 (2018)
  7. Novitsky A, Shalin A S, Lavrinenko A V Phys. Rev. A 95 (5) (2017)
  8. Krapez Je-C Journal Of Modern Optics 64 1988 (2017)
  9. Denisova N A, Rezvov A V Radiophys Quantum El 60 224 (2017)
  10. Denisova N A Radiophys Quantum El 59 234 (2016)
  11. Liu X, Huang K Eur. Phys. J. Appl. Phys. 73 10901 (2016)
  12. Feshchenko A M, Ryazanov M I Opt. Spectrosc. 119 113 (2015)
  13. Shagaev V V Tech. Phys. 60 1738 (2015)
  14. Electromagnetic Phenomena in Matter (2015) p. 689
  15. Brovenko A V, Melezhik P N et al Radiophys Quantum El 56 238 (2013)
  16. Antonets I V, Kotov L N et al J. Commun. Technol. Electron. 58 12 (2013)
  17. Antonets I V, Shavrov V G, Shcheglov V I J. Commun. Technol. Electron. 58 1103 (2013)
  18. Antonets I V, Kotov L N et al J. Commun. Technol. Electron. 57 62 (2012)
  19. Balkhanov V K, Angarkhaeva L Kh et al J. Commun. Technol. Electron. 57 1160 (2012)
  20. Zolotovskii I O, Minvaliev R N, Sementsov D I Opt. Spectrosc. 110 277 (2011)
  21. Tkachenko V S, Kruglyak V V, Kuchko A N Phys. Rev. B 81 (2) (2010)
  22. Adamova M S, Zolotovskii I O, Sementsov D I Quantum Electron. 39 256 (2009)
  23. Adamova M S, Zolotovskii I O J. Commun. Technol. Electron. 54 197 (2009)
  24. Sternberg N, Smolyakov A I PIER 99 37 (2009)
  25. Sementsov D I, Sannikov D G Dokl. Phys. 53 480 (2008)
  26. Shvartsburg A B, Kuzmiak V, Petite G Physics Reports 452 33 (2007)
  27. Erokhin N S, Zakharov V E Dokl. Phys. 52 485 (2007)
  28. Aslanyan L S Tech. Phys. Lett. 30 600 (2004)

© 1918–2019 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions