Reviews of topical problems

Cooling of neutron stars and superfluidity in their cores

, ,
Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation

We study the heat capacity and neutrino emission reactions (direct and modified Urca processes, nucleon-nucleon bremsstrahlung, Cooper pairing of nucleons) in the supranuclear density matter of neutron star cores with superfluid neutrons and protons. Various superfluidity types are analysed (singlet-state pairing and two types of triplet-state pairing, without and with gap nodes at the nucleon Fermi surface). The results are used for cooling simulations of isolated neutron stars. Both the standard cooling and the cooling enhanced by the direct Urca process are strongly affected by nucleon superfluidity. Comparison of the cooling theory of isolated neutron stars with observations of their thermal radiation may give stringent constraints on the critical temperatures of the neutron and proton superfluidities in the neutron star cores.

Fulltext is available at IOP
PACS: 04.40.−b, 26.60.+c, 95.30.−k, 97.60.Jd (all)
DOI: 10.1070/pu1999v042n08ABEH000556
Citation: Yakovlev D G, Levenfish K P, Shibanov Yu A "Cooling of neutron stars and superfluidity in their cores" Phys. Usp. 42 737 (1999)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Яковлев Д Г, Левенфиш К П, Шибанов Ю А «Остывание нейтронных звезд и сверхтекучесть в их ядрах» УФН 169 825–868 (1999); DOI: 10.3367/UFNr.0169.199908a.0825

References (257) Cited by (43) Similar articles (20) ↓

  1. D.M. Sedrakyan, K.M. Shakhabasyan “Superfluidity and the magnetic field of pulsars34 (7) 555–571 (1991)
  2. V.S. Beskin “Radio pulsars42 1071 (1999)
  3. V.L. Ginzburg “PULSARS (Theoretical Concepts)14 83–103 (1971)
  4. V.L. Ginzburg, V.V. Zheleznyakov, V.V. Zaitsev “Coherent radio-emission mechanisms and magnetic pulsar models12 378–398 (1969)
  5. V.S. Beskin “Axisymmetric stationary flows in compact astrophysical objects40 659–688 (1997)
  6. M.A. Liberman, B. Johansson “Properties of matter in ultrahigh magnetic fields and the structure of the surface of neutron stars38 117–136 (1995)
  7. A.Yu. Potekhin “The physics of neutron stars53 1235–1256 (2010)
  8. G.S. Bisnovatyi-Kogan, V.M. Chechetkin “Nonequilibrium shells of neutron stars and their role in sustaining x-ray emission and nucleosynthesis22 89–108 (1979)
  9. S.B. Popov, M.E. Prokhorov “Population synthesis in astrophysics50 1123–1146 (2007)
  10. A.M. Cherepashchuk “Masses of black holes in binary stellar systems39 759–780 (1996)
  11. L.P. Grishchuk, V.M. Lipunov et alGravitational wave astronomy: in anticipation of first sources to be detected44 1–51 (2001)
  12. A.Y. Potekhin “Atmospheres and radiating surfaces of neutron stars57 735–770 (2014)
  13. A.A. Shashkin “Metal-insulator transitions and the effects of electron-electron interactions in two-dimensional electron systems48 129–149 (2005)
  14. I.V. Galaktionov “Search for antimatter and dark matter, precision studies of the cosmic rays fluxes on the international space station. AMS experiment. Results of four year exposure60 40–57 (2017)
  15. V.P. Krainov, M.B. Smirnov “The evolution of large clusters under the action of ultrashort superintense laser pulses43 901–920 (2000)
  16. A.F. Zakharov, M.V. Sazhin “Gravitational microlensing41 945–982 (1998)
  17. V.E. Fortov, A.G. Khrapak et alDusty plasmas47 447–492 (2004)
  18. R.F. Trunin “Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions37 1123–1145 (1994)
  19. B.M. Vladimirskii, A.M. Gal’per et alCygnus X-3: a powerful galactic source of hard radiation28 153–169 (1985)
  20. Yu.A. Shchekinov, V.N. Lukash et alInterstellar and intergalactic gas in the far IR and submillimeter spectral ranges60 961–993 (2017)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions