Issues

 / 

1999

 / 

May

  

Reviews of topical problems


Study of spatially extended dynamical systems using probabilistic cellular automata


Photochemistry Center, Russian Academy of Sciences, Novatorov str. 7a, Moscow, 117421, Russian Federation

Spatially extended dynamical systems are ubiquitous and include such things as insect and animal populations; complex chemical, technological, and geochemical processes; humanity itself, and much more. It is clearly desirable to have a certain universal tool with which the highly complex behaviour of nonlinear dynamical systems can be analyzed and modelled. For this purpose, cellular automata seem to be good candidates. In the present review, emphasis is placed on the possibilities that various types of probabilistic cellular automata (PCA), such as DSMC (direct simulation Monte Carlo) and LGCA (lattice-gas cellular automata), offer. The methods are primarily designed for modelling spatially extended dynamical systems with inner fluctuations accounted for. For the Willamowskii-Roessler and Oregonator models, PCA applications to the following problems are illustrated: the effect of fluctuations on the dynamics of nonlinear systems; Turing structure formation; the effect of hydrodynamic modes on the behaviour of nonlinear chemical systems (stirring effects); bifurcation changes in the dynamical regimes of complex systems with restricted geometry or low spatial dimension; and the description of chemical systems in microemulsions.

Fulltext pdf (891 KB)
Fulltext is also available at DOI: 10.1070/PU1999v042n05ABEH000558
PACS: 02.50.Ng, 02.70.Lq, 05.70.Ln, 87.10.+e (all)
DOI: 10.1070/PU1999v042n05ABEH000558
URL: https://ufn.ru/en/articles/1999/5/a/
000080958700001
Citation: Vanag V K "Study of spatially extended dynamical systems using probabilistic cellular automata" Phys. Usp. 42 413–434 (1999)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Ванаг В К «Исследование пространственно распределенных динамических систем методами вероятностного клеточного автомата» УФН 169 481–505 (1999); DOI: 10.3367/UFNr.0169.199905a.0481

References (165) ↓ Cited by (33) Similar articles (20)

  1. Tsetlin M L Dokl. Akad. Nauk USSR 139 830 (1961)
  2. Tsetlin M L Issledovaniya po Teorii Avtomatov i Modelirovaniyu Biologicheskikh Sistem (Automaton Theory and Modeling of Biological Systems, Moscow: Nauka, 1969) [Translated into English (New York: Academic Press, 1973)]
  3. Kobrinskiî N E, Trakhtenbrot B A Vvedenie v Teoriyu Konechnykh Avtomatov (Introduction to the Theory of Finite Automata, Moscow: Fizmatgiz, 1962) [Translated into English (Amsterdam: North-Holland Publ. Co., 1965)]
  4. Glushkov V M Sintez Tsifrovykh Avotmatov (Synthesis of Digital Automata, Moscow: Fizmatgiz, 1962)
  5. Glushkov V M Vvedenie v Teoriyu Samosovershenstvuyushchikhsya Sistem (Introduction to the Theory of Self-Perfecting Systems, Kiev: KVIRTU, 1962)
  6. Tsetlin M L, Krulov V Yu Dokl. Akad. Nauk USSR 149 284 (1963)
  7. Krinskiî V I Biofiz. 9 484 (1964)
  8. von Neumann J Theory of Self-Reproducing Automata (Urbana: University of Illinois Press, 1966)
  9. Wolfram S Cellular Automata and Complexity (New York: Addison-Wesley, 1994)
  10. Wolfram S Rev. Mod. Phys. 55 601 (1983)
  11. Wolfram S Theory and Applications of Cellular Automata (Singapore: World Scientific, 1986)
  12. Wolfram S Physica D 10 1 (1984)
  13. Loskutov A Yu, Mikhaîlov A S Vvedenie v Sineregetiku (Introduction to Synergetics, Moscow: Nauka, 1990)
  14. Aît A O, Vanag V k Zh. Fiz. Khim. 70 1385 (1996)
  15. Baras F, Malek Mansour M, in Advances in Chemical Physics, Vol. 100 (Eds I Prigogine, S A Rice, New York: Wiley, 1997) p. 393
  16. Chou H-H, Reggia J A Physica D 110 252 (1997)
  17. d’Humières D, in Cellular Automata and Modeling of Complex Physical Systems (Springer Proceedings in Physics, Vol. 46, Eds P Manneville et al., Berlin: Springer-Verlag, 1990) p. 186
  18. d’Humières D Physica D 47 299 (1991)
  19. Deutsch A Int. J. Bifurcation and Chaos 6 1735 (1996)
  20. Dow R A Physica D 110 67 (1997)
  21. Greeberg J M, Hastings S P SIAM J. Appl. Math. 34 515 (1978)
  22. Gruner D, Kapral R, Lawniczak A J. Chem. Phys. 99 3938 (1993)
  23. Kapral R, Lawniczak A, Masiar P J. Chem. Phys. 96 2762 (1992)
  24. Kapral R, Wu X-G, in Chemical Waves and Patterns (Eds R Kapral, K Showalter, New York: Kluwer, 1995) p. 609
  25. Kapral R, Wu X-G J. Phys. Chem. 100 18976 (1996)
  26. Markus M et al. Int. J. Bifurcation and Chaos 6 1817 (1996)
  27. Maselko J J. Phys. Chem. 99 2949 (1995)
  28. Moore C Physica D 111 27 (1998)
  29. Munuzuri A, Markus M Int. J. Bifurcation and Chaos 6 1837 (1996)
  30. Prakash S, Nicolis G J. Stat. Phys. 86 1289 (1997)
  31. Provata A, Turner J W, Nicolis G J. Stat. Phys. 70 1195 (1998)
  32. Stampfle M Int. J. Bifurcation and Chaos 6 603 (1996)
  33. Vanag V K J. Phys. Chem. 100 11336 (1996)
  34. Vanag V K J. Phys. Chem. A 101 7074 (1997)
  35. Wu X-G, Kapral R J. Chem. Phys. 100 5936 (1994)
  36. Bunimovich L A Int. J. Bifurcation and Chaos 6 1127 (1996)
  37. Durrett R Nonlinear Science Today 1 1 (1991)
  38. Durrett R, Griffeath D J. Exp. Math. 2 183 (1993)
  39. Fisch R, Gravner J, Griffeath D Statistics and Computing 1 23 (1991)
  40. Gravner J, Griffeath D Trans. Am. Math. Soc. 340 837 (1993)
  41. Gutowitz H Complexity 1 16 (1996)
  42. Gutowitz H Complexity 1 29 (1996)
  43. Baras F, Malek Mansour M Phys. Rev. E 54 6139 (1996)
  44. Brieger L, Bonomi E Physica D 47 159 (1991)
  45. Gerhardt M, Schuster H, Tyson J J Science 247 1563 (1990)
  46. Lawniczak A et al. Physica D 47 132 (1991)
  47. Markus M, Hess B Nature (London) 347 56 (1990)
  48. Prakash S, Nicolis G J. Stat. Phys. 82 297 (1996)
  49. Schepers H E, Markus M Physica A 188 337 (1992)
  50. Vanag V K, Nicolis G J.Chem. Phys. (in press)
  51. Gutowitz H, in Cellular Automata and Cooperative Phenomena (Eds E Goles, N Boccara, New York: Kluwer, 1993)
  52. Chen S et al. Physica D 47 97 (1991)
  53. Pöschel T, Freund J A, in Stochastic Dynamics (Eds L Schimansky-Geier, T Poschel, Berlin: Springer, 1997) p. 220
  54. Meinhardt H Int. J. Bifurcation and Chaos 7 1 (1997)
  55. Klimontovich Yu L Usp. Fiz. Nauk 164 811 (1994) [Phys. Usp. 37 737 (1994)]
  56. Alexander S et al. Rev. Mod. Phys. 53 175 (1981)
  57. Baras F Phys. Rev. Lett. 77 1398 (1996)
  58. Havlin S, Ben-Avraham D Adv. Phys. 36 695 (1987)
  59. Nicolis G, Prigogine I Self-Organization in Nonequilibrium Systems (New York: Wiley, 1977)
  60. Nicolis G, Altares V J. Phys. Chem. 93 2861 (1989)
  61. Crutchfield J P, Hanson J E Physica D 69 279 (1993)
  62. Hardy J, Pomeau Y J. Math. Phys. 13 1042 (1972)
  63. Taguchi Y, Takayasu H Physica D 69 366 (1993)
  64. Domany E, Kinzel W Phys. Rev. Lett. 53 311 (1984)
  65. Kinzel W Z. Phys. B 58 229 (1985)
  66. Boissonade J Phys. Lett. A 74 285 (1979)
  67. Boissonade J Physica A 113 607 (1982)
  68. Ortoleva P, Yip S J. Chem. Phys. 65 2045 (1976)
  69. Chate H, Manneville P Europhys. Lett. 14 409 (1991)
  70. Langton C G Physica D 22 120 (1986)
  71. Langton C G, in Emergent computation (Ed. S Forrest, Amsterdam: North-Holland, 1990) p. 12
  72. Li W, Packard N H, Langton C G Physica D 45 77 (1990)
  73. Keirstead W, Huberman B A Phys. Rev. Lett. 56 1094 (1986)
  74. Fractals in Physics (Amsterdam: North-Holland, 1986)
  75. Malinetskiî G G, Shakaeva M S Dokl. Akad. Nauk USSR 321 711 (1991) [Sov. Phys. Dokl. 36 826 (1991)]
  76. Malinetskiî G G, Shakaeva M S Dokl. Akad. Nauk USSR 325 716 (1992) [Sov. Phys. Dokl. 37 401 (1992)]
  77. Malinetskiî G G, Shakaeva M S Zh. Fiz. Khim. 69 1523 (1995)
  78. Oono Y, Kohmoto M Phys. Rev. Lett. 55 2927 (1987)
  79. Vanag V K, Virchenko A Yu, Vanag K V Izv. Vyssh. Uchebn. Zaved. Prikladnaya Nelineînaya Dinamika 4 (3) 97 (1996)
  80. Komp’yutery i Nelineînye Yavleniya: Informatika i Sovremennoe Estestvoznanie (Computers and Nonlinear Phenomena: Informatics and Modern Science, Ed. A A Samarskiî, Moscow: Nauka, 1988)
  81. Tachiya M, in Kinetics of Nonhomogeneous Processes (Ed. G R Freeman, New York: Wiley, 1987) p. 575
  82. Landau L D, Lifshits E M Teoreticheskaya Fizika Vol. 6 Gidrodinamika (Hydrodynamics, Moscow: Nauka, 1988) [Translated into English (New York: Pergamon Press, 1990)]
  83. Anacker L W, Kopelman R Phys. Rev. Lett. 58 289 (1987)
  84. Tretyakov A, Provata A, Nicolis G J. Phys. Chem. 99 2770 (1995)
  85. Curl R L Am. Inst. Chem. Eng. J. 9 175 (1963)
  86. Spielman L A, Levenspiel O Chem. Eng. Sci. 20 247 (1965)
  87. Evangelista J J, Katz S, Shinnar R Am. Inst. Chem. Eng. J. 15 843 (1969)
  88. Horsthemke W, Hannon L J. Chem. Phys. 81 4363 (1984)
  89. Chang P C, Mou C Y, Lee D J Chem. Eng. Sci. 51 2601 (1996)
  90. Fox R O, Erjaee G, Zou Q Chem. Eng. Sci. 49 3465 (1994)
  91. Lee D J, Chang P C, Mou C Y J. Phys. Chem. A 101 1854 (1997)
  92. Villermaux J Rev. Chem. Eng. 7 51 (1991)
  93. Ali F, Menzinger M J. Phys. Chem. A 101 2304 (1997)
  94. Ruoff P J. Phys. Chem. 97 6405 (1993)
  95. Hlavacova J, Sevcik P J. Phys. Chem. 98 6304 (1994)
  96. Dab D et al. Phys. Rev. Lett. 64 2462 (1990)
  97. Dab D, Boon J-P, Li Y-X Phys. Rev. Lett. 66 2535 (1991)
  98. Kapral R, Lawniczak A, Masiar P Phys. Rev. Lett. 66 2539 (1991)
  99. Lattice Gas Methods for Partial Differential Equations (New York: Addison-Wesley, 1990)
  100. Boghosian B M et al. Phys. Rev. E 55 4137 (1997)
  101. d’Humières D et al. Complex Systems 1 648 (1987)
  102. Frisch U, Hasslacher B, Pomeau Y Phys. Rev. Lett. 56 1505 (1986)
  103. Grosfils P, Boon J-P, Lallemand P Phys. Rev. Lett. 68 1077 (1992)
  104. Grosfils P et al. Phys. Rev. E 48 2665 (1993)
  105. Weimar J R et al. Europhys. Lett. 20 627 (1992)
  106. Baras F, Pearson J E, Malek Mansour M J. Chem. Phys. 93 5747 (1990)
  107. Baras F, Nicolis G, in Microscopic Simulation of Complex Flows (Ed. M Mareschal, New York: Plenum, 1990)
  108. Baras F, Malek Mansour M, Pearson J E J. Chem. Phys. 105 8257 (1996)
  109. Bird G A Molecular Gas Dynamics (Oxford: Clarendon, 1976)
  110. Bird G A Phys. Fluids 30 364 (1987)
  111. Bird G A Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford: Clarendon, 1994)
  112. Chenoweth D R, Paolucci S Phys. Fluids 28 2365 (1985)
  113. Garcia A L Numerical Methods for Physics (Englewood Cliffs, N.J.: Prentice Hall, 1994)
  114. Geysermans P, Baras F J. Chem. Phys. 105 1402 (1996)
  115. Mareschal M, De Wit A J. Chem. Phys. 96 2000 (1992)
  116. Muntz E P Annu. Rev. Mech. 21 387 (1989)
  117. Romanovskiî Yu M, Stepanova N V, Chernavskiî D S, in Matematicheskoe Modelirovanie v Biofizike (Mathematical Modelling in Biophysics, Moscow: Nauka, 1975)
  118. Klimontovich Yu L Turbulentnoe Dvizhenie i Struktura Khaosa (Turbulent Motion and the Structure of Chaos, Moscow: Nauka, 1990) [Translated into English (Dordrecht: Kluwer Acad. Publ., 1991)]
  119. Gillespie D T J. Comput. Phys. 22 403 (1976)
  120. Gillespie D T J. Phys. Chem. 81 2340 (1977)
  121. Turner J S J. Phys. Chem. 81 2379 (1977)
  122. Bunker D L et al. III, Combust. Flame 23 373 (1974)
  123. Nakanishi T J. Phys. Soc. Jpn. 32 1313 (1972)
  124. Nakanishi T J. Phys. Soc. Jpn. 40 1232 (1976)
  125. Aronovitz J A, Nelson D R Phys. Rev. A 29 2012 (1984)
  126. Almgren M, in Kinetics and Catalysis in Microheterogeneous Systems (Eds M Gratzel, K Kalyanasundaram, New York: Dekker, 1991) p. 63
  127. Koper G J M et al. J. Phys. Chem. 99 13291 (1995)
  128. Daniels F, Alberty R A Physical Chemistry 2nd ed. (New York: Wiley, 1975) [Translated into Russian (Moscow: Mir, 1978)]
  129. Aguda B D, Clarke B L J. Chem. Phys. 89 7428 (1988)
  130. Willamowski K-D, Rössler O E Z. Naturforsch. A 35 317 (1980)
  131. Horsthemke W, Lefever R Noise-Induced Transitions (Berlin: Springer-Verlag, 1984) [Translated into Russian (Moscow: Mir, 1987)]
  132. Deering W D, West B J J. Stat. Phys. 65 1247 (1991)
  133. Ovchinnikov A A, Zel’dovich Ya B Khim. Fiz. 28 215 (1978)
  134. Lin A L, Kopelman R, Argyrakis P J. Phys. Chem. A 101 802 (1997)
  135. Molski A, Bergling S, Keizer J J. Phys. Chem. 100 19049 (1996)
  136. Noyes R M, Gardiner W C (Jr) J. Phys. Chem. 85 594 (1981)
  137. Oshanin G et al. J. Phys. Chem. 98 7390 (1994)
  138. Reigada R et al. J. Chem. Phys. 105 10925 (1996)
  139. Reigada R et al. J. Chem. Phys. 107 843 (1997)
  140. Sancho J M et al. J. Phys. Chem. 100 19066 (1996)
  141. Sokolov I M, Argyrakis P, Blumen A J. Phys. Chem. 98 7256 (1994)
  142. Toussaint D, Wilczek F J. Chem. Phys. 78 2642 (1983)
  143. Burlatskiî S F, Ovchinnikov A A Zh. Teor. Eksp. Fiz. 92 1618 (1987) [Sov. Phys. JETP 65 908 (1987)]
  144. Kopelman R Science 241 1620 (1988)
  145. Infelta P P, Gratzel M, Thomas J K J. Phys. Chem. 78 190 (1974)
  146. Tachiya M Chem. Phys. Lett. 33 289 (1975)
  147. Lianos P, Argyrakis P J. Phys. Chem. 98 7278 (1994)
  148. Almgren M, Johannsson R J. Phys. Chem. 96 9512 (1992)
  149. Almgren M, Johannsson R, Eriksson J C J. Phys. Chem. 97 8590 (1993)
  150. Johannsson R, Almgren M, Alsins J J. Phys. Chem. 95 3819 (1991)
  151. Epstein I R Nature (London) 374 321 (1995)
  152. Vanag V K, Alfimov M V J. Phys. Chem. 97 1884 (1993)
  153. Vanag V K, Melikhov D P J. Phys. Chem. 99 17372 (1995)
  154. Troy W, in Oscillations and Travelling Waves in Chemical Systems (Eds R Field, M Burger, New York: Wiley, 1985) [Translated into Russian (Moscow: Mir, 1988) p. 167]
  155. Astakhov V V et al. Physica D 109 11 (1997)
  156. Abarbanel’ G D et al. Usp. Fiz. Nauk 166 363 (1996) [Phys. Usp. 39 337 (1996)]
  157. Daido H Int. J. Bifurcation and Chaos 7 807 (1997)
  158. Han S K et al. Int. J. Bifurcation and Chaos 7 877 (1997)
  159. Kuramoto Y Int. J. Bifurcation and Chaos 7 789 (1997)
  160. Ivanitskiî G R, Medvinskiî A B, Tsyganov M A Usp. Fiz. Nauk 164 1041 (1994)] [Phys. Usp. 37 991 (1994)]
  161. Mertens F, Imbihl R, Mikhailov A S J. Chem. Phys. 101 9903 (1994)
  162. Hess B, Mikhailov A S Ber. Bunsenges. Phys. Chem. 98 1198 (1994)
  163. Mikhailov A S, Hess B J. Phys. Chem. 100 19059 (1996)
  164. Bak P, Boettcher S Physica D 107 143 (1997)
  165. Newman M E J Physica D 107 293 (1997)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions