Issues

 / 

1998

 / 

June

  

Special issue


Bose-Einstein condensation in magnetic traps. Introduction to the theory

 a, b
a P.L. Kapitza Institute for Physical Problems, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 117334, Russian Federation
b Dipartimento di Fisica, Università di Trento and BDC Center, Povo, Trento, I-38050, Italy

The recent realization of Bose-Einstein condensation in atomic gases opens new possibilities for the observation of macroscopic quantum phenomena. There are two important features of these systems — weak interaction and significant spatial inhomogeneity. Because of this a non-trivial ’zeroth-order’ theory exists, compared to the ’first-order’ Bogolubov theory. The zeroth-order theory is based on the mean-field Gross-Pitaevskii equation for the condensate ψ-function. The equation is classical in its essence but contains the constant hbar explicitly. Phenomena such as collective modes, interference, tunneling, Josephson-like current and quantized vortex lines can be described using this equation. Elementary excitations define the thermodynamic behavior of the system and result in a Landau-type damping of collective modes. Fluctuations of the phase of the condensate wave function restrict the monochromaticity of the Josephson current. Fluctuations of the numbers of quanta result in quantum collapse-revival of the collective oscillations.

Fulltext pdf (284 KB)
Fulltext is also available at DOI: 10.1070/PU1998v041n06ABEH000407
PACS: 05.30.Jp, 32.80.Pj, 52.55.Lf (all)
DOI: 10.1070/PU1998v041n06ABEH000407
URL: https://ufn.ru/en/articles/1998/6/e/
000075347000005
Citation: Pitaevskii L P "Bose-Einstein condensation in magnetic traps. Introduction to the theory" Phys. Usp. 41 569–580 (1998)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Питаевский Л П «Конденсация Бозе-Эйнштейна в магнитных ловушках. Введение в теорию» УФН 168 641–653 (1998); DOI: 10.3367/UFNr.0168.199806e.0641

References (61) Cited by (111) Similar articles (11)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions