Issues

 / 

1997

 / 

October

  

Reviews of topical problems


Quasiparticles in strongly correlated electron systems in copper oxides


L.V. Kirenskii Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Academgorodok 50, stroenie 38, Krasnoyarsk, 660036, Russian Federation

New experimental and theoretical results on the electronic structure and spectral properties of quasiparticles in copper oxides are reviewed. It is shown that the electronic structure transforms from antiferromagnetic insulators to optimally doped high-temperature superconductors as the doping level is varied. The experimental methods considered are primarily angular resolved photoelectron spectroscopy (ARPES), neutron scattering, and NMR. Two types of electronic structure calculations for data interpretation purposes are considered, namely, exact numerical methods for finite clusters (exact diagonalization and the quantum Monte Carlo method) and approximate schemes for an infinite lattice. As a result, a coherent unified picture emerges, in which magnetic polarons (which are carriers in a weakly doped antiferromagnetic lattice) transform into a system of Fermi quasiparticles dressed in short-range antiferromagnetic-type spin fluctuations. In the region of weakly doped metallic compositions, deviations from Fermi-liquid properties are seen, such as the failure of Luttinger’s theorem, shadowy photoemission bands, and the spin pseudogap effect in spectral and thermodynamic measurements. The situation in the neighborhood of the insulator-metal concentration transition is noted to be least understood.

Fulltext is available at IOP
PACS: 71.27.+a, 74.25.Jb (all)
DOI: 10.1070/PU1997v040n10ABEH000289
URL: https://ufn.ru/en/articles/1997/10/b/
Citation: Ovchinnikov S G "Quasiparticles in strongly correlated electron systems in copper oxides" Phys. Usp. 40 993–1017 (1997)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Овчинников С Г «Квазичастицы в сильно коррелированной электронной системе оксидов меди» УФН 167 1043–1068 (1997); DOI: 10.3367/UFNr.0167.199710b.1043

References (225) Cited by (44) ↓ Similar articles (20)

  1. Gavrichkov V A, Polukeev S I, Ovchinnikov S G Phys. Rev. B 101 (9) (2020)
  2. Ovchinnikov S G, Rudenko V V et al J. Exp. Theor. Phys. 131 177 (2020)
  3. Kagan M Yu, Bianconi A Condensed Matter 4 51 (2019)
  4. Nesterov A I, Orlov Yu S et al Phys. Rev. B 96 (13) (2017)
  5. Korshunov M M, Togushova Yu N, Dolgov O V Uspekhi Fizicheskikh Nauk 186 1315 (2016)
  6. Sidorov K A, Gavrichkov V A et al Phys. Status Solidi B 253 486 (2016)
  7. Ovchinnikov S G, Orlov Yu S et al Jetp Lett. 103 161 (2016)
  8. Dudnikov V A, Orlov Yu S et al Jetp Lett. 104 588 (2016)
  9. Kuz’min V I, Nikolaev S V, Ovchinnikov S G J. Exp. Theor. Phys. 123 511 (2016)
  10. Menushenkov A P, Kuznetsov A V et al J. Synch. Investig. 7 407 (2013)
  11. Enríquez M, Rosas-Ortiz O Annals Of Physics 339 218 (2013)
  12. Innocenti D, Caprara S et al Supercond. Sci. Technol. 24 015012 (2011)
  13. Larionov I A J. Phys.: Conf. Ser. 324 012014 (2011)
  14. Ovchinnikov S G, Korshunov M M, Shneyder E I J. Exp. Theor. Phys. 109 775 (2009)
  15. Ovchinnikov S G, Gavrichkov V A et al Low Temperature Physics 32 483 (2006)
  16. Val’kov V V JETP 100 608 (2005)
  17. Gavrichkov V A, Ovchinnikov S G J. Exp. Theor. Phys. 98 556 (2004)
  18. Dunne L J, Brändas E J Fundamental World of Quantum Chemistry Chapter 36 (2003) p. 931
  19. Ovchinnikov S G Journal Of Magnetism And Magnetic Materials 258-259 210 (2003)
  20. Borisov A A, Gavrichkov V A, Ovchinnikov S G Mod. Phys. Lett. B 17 479 (2003)
  21. Val’kov V V, Val’kova T A et al Mod. Phys. Lett. B 17 441 (2003)
  22. Kudasov Yu B Uspekhi Fizicheskikh Nauk 173 121 (2003)
  23. Gabovich A M, Voitenko A I, Ausloos M Physics Reports 367 583 (2002)
  24. Ovchinnikov S G Lecture Notes In Physics Vol. Ruthenate and Rutheno-Cuprate Materials603 Chapter 16 (2002) p. 239
  25. Samovarov V N, Vakula V L et al Low Temperature Physics 28 674 (2002)
  26. Val’kov V V, Val’kova T A et al Jetp Lett. 75 378 (2002)
  27. Eremenko V V, Samovarov V N et al Low Temperature Physics 27 981 (2001)
  28. Digor D F, Digor D F i dr Teor. Mat. Fiz. 127 304 (2001)
  29. Dunne L J, Brändas E J Advances In Quantum Chemistry Vol. 40 (2001) p. 225
  30. Moskalenko V A, Entel P et al Phys. Rev. B 63 (24) (2001)
  31. Gabovich A M, Voitenko A I et al Supercond. Sci. Technol. 14 R1 (2001)
  32. Gavrichkov V A, Kuz’min E V, Ovchinnikov S G Uspekhi Fizicheskikh Nauk 170 189 (2000)
  33. Gabovich A M, Voitenko A I Physica C: Superconductivity 329 198 (2000)
  34. Kuz’min E V, Ovchinnikov S G et al J. Exp. Theor. Phys. 91 353 (2000)
  35. Avramov P V, Ovchinnikov S G Phys. Solid State 42 788 (2000)
  36. Gavrichkov V A, Ovchinnikov S G et al J. Exp. Theor. Phys. 91 369 (2000)
  37. Brändas E J, Dunne L J, Murrell J N Progress In Theoretical Chemistry And Physics Vol. New Trends in Quantum Systems in Chemistry and Physics7 Chapter 17 (2000) p. 289
  38. Volkova L M, Polishchuk S A et al Inorg Mater 36 919 (2000)
  39. Ovchinnikov S G Phys. Solid State 41 534 (1999)
  40. Izyumov Yu A Uspekhi Fizicheskikh Nauk 169 225 (1999)
  41. Moskalenko V A, Moskalenko V A i dr Teor. Mat. Fiz. 121 464 (1999) [Moskalenko V A, Perkins N B Theor Math Phys 121 1654 (1999)]
  42. Dunne L J, Br�ndas E J, Murrell J N Int. J. Quant. Chem. 74 617 (1999)
  43. Sergeeva G G, Stepanovskiı̆ Yu P, Chechkin A V Low Temperature Physics 24 771 (1998)
  44. Wilson J A J. Phys.: Condens. Matter 10 3387 (1998)

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions