Issues

 / 

1995

 / 

August

  

Methodological notes


Coulomb disintegration of weak electron fluxes and the photocounts

, ,
Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991, Russian Federation

Formation of electron bunches in the interelectrode space in vacuum detectors of optical radiation is discussed. Such bunches give rise to pulses of the electric current, usually interpreted as photocounts, in the external circuit. It is shown that the traditional theory of photocounts, in inconsistent and, in particular, it violates causality. Calculations based on the variational method are used to show that a distributed low-density electron cloud is unstable in the presence of the Coulomb forces and that it splits into bunches. The electron bunches moving in the interelectrode space experience peaking, which is easiest to understand on the basis of the catastrophe theory. Spatial (caustics) and temporal (overtaking) catastrophes may occur in an electron flux. Numerical simulation is used to consider spherical and linear expansion of electron bunches under the action of the Coulomb forces. It is shown that sharp electron density maxima are formed and that their properties resemble those of point-like particles capable of inducing electric current peaks (photocounts) in the external circuit of a detector when they travel across the interelectrode space. Circumstances leading to a higher probability of formation of one-electron bunches are pointed out. The analysis as a whole is intended to help the understanding of the discrete nature of photocounts when a photocathode is excited by a continuous high-energy laser radiation train.

Fulltext pdf (560 KB)
Fulltext is also available at DOI: 10.1070/PU1995v038n08ABEH000101
PACS: 79.60.Bm, 42.50.Ct, 07.60.Dq, 85.60.Gz (all)
DOI: 10.1070/PU1995v038n08ABEH000101
URL: https://ufn.ru/en/articles/1995/8/d/
A1995TF94900004
Citation: Bykov V P, Gerasimov A V, Turin V O "Coulomb disintegration of weak electron fluxes and the photocounts" Phys. Usp. 38 911–921 (1995)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Быков В П, Герасимов А В, Турин В О «Кулоновская дезынтеграция слабых электронных потоков и фотоотсчеты» УФН 165 955–966 (1995); DOI: 10.3367/UFNr.0165.199508d.0955

References (23) Cited by (18) Similar articles (20) ↓

  1. V.P. Bykov “Squeezed light and nonclassical motion in mechanicsPhys. Usp. 36 (9) 841–850 (1993)
  2. V.P. Bykov “Basic properties of squeezed lightSov. Phys. Usp. 34 (10) 910–924 (1991)
  3. L.A. Apresyan, Yu.A. Kravtsov “Photometry and coherence: wave aspects of the theory of radiation transportSov. Phys. Usp. 27 301–313 (1984)
  4. V.P. Bykov, V.I. Tatarskii “Perturbation theory for resolvents as applied to problems in radiation theorySov. Phys. Usp. 34 (2) 167–184 (1991)
  5. A.B. Brailovskii, V.L. Vaks, V.V. Mityugov “Quantum models of relaxationPhys. Usp. 39 745–750 (1996)
  6. E.L. Nolle “Tunneling photoeffect mechanism in metallic nanoparticles activated by cesium and oxygenPhys. Usp. 50 1079–1082 (2007)
  7. S.A. Afanas’ev, D.I. Sementsov “Energy fluxes during the interference of electromagnetic wavesPhys. Usp. 51 355–361 (2008)
  8. D.N. Klyshko “The Einstein-Podolsky-Rosen paradox for energy-time variablesSov. Phys. Usp. 32 555–563 (1989)
  9. B.M. Bolotovskii, V.P. Bykov “Radiation by charges moving faster than lightSov. Phys. Usp. 33 (6) 477–487 (1990)
  10. B.Sh. Perkal’skis “A Lummer–Gehrcke plate for instructional purposesSov. Phys. Usp. 7 330–330 (1964)
  11. V.P. Bykov “Form of the Hamiltonian and the initial conditions in radiation problemsSov. Phys. Usp. 27 631–640 (1984)
  12. A.M. Zheltikov “The critique of quantum mind: measurement, consciousness, delayed choice, and lost coherencePhys. Usp. 61 1016–1025 (2018)
  13. S.M. Stishov “Quantum effects in a system of Boltzmann hard spheresPhys. Usp. 62 617–622 (2019)
  14. D.A. Kirzhnits, S.N. Yudin “Paradoxes of superfluid rotationPhys. Usp. 38 1283–1288 (1995)
  15. N.P. Klepikov “Radiation damping forces and radiation from charged particlesSov. Phys. Usp. 28 506–520 (1985)
  16. M.V. Kuzelev, A.A. Rukhadze “Nonrelativistic quantum theory of stimulated Cherenkov radiation and Compton scattering in a plasmaPhys. Usp. 54 375–380 (2011)
  17. A.A. Andronov, Yu.A. Ryzhov “An infinity of the classical theory of fluctuations in a nondegenerate electron gasSov. Phys. Usp. 21 873–878 (1978)
  18. A.V. Shchagin “Fresnel coefficients for parametric X-ray (Cherenkov) radiationPhys. Usp. 58 819–827 (2015)
  19. A.M. Ignatov, A.I. Korotchenko et alOn the interpretation of computer simulation of classical Coulomb plasmaPhys. Usp. 38 109–114 (1995)
  20. V.N. Tsytovich “Collective effects of plasma particles in bremsstrahlungPhys. Usp. 38 87–108 (1995)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions