Methodological notes

Coulomb disintegration of weak electron fluxes and the photocounts

, ,
Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119942, Russian Federation

Formation of electron bunches in the interelectrode space in vacuum detectors of optical radiation is discussed. Such bunches give rise to pulses of the electric current, usually interpreted as photocounts, in the external circuit. It is shown that the traditional theory of photocounts, in inconsistent and, in particular, it violates causality. Calculations based on the variational method are used to show that a distributed low-density electron cloud is unstable in the presence of the Coulomb forces and that it splits into bunches. The electron bunches moving in the interelectrode space experience peaking, which is easiest to understand on the basis of the catastrophe theory. Spatial (caustics) and temporal (overtaking) catastrophes may occur in an electron flux. Numerical simulation is used to consider spherical and linear expansion of electron bunches under the action of the Coulomb forces. It is shown that sharp electron density maxima are formed and that their properties resemble those of point-like particles capable of inducing electric current peaks (photocounts) in the external circuit of a detector when they travel across the interelectrode space. Circumstances leading to a higher probability of formation of one-electron bunches are pointed out. The analysis as a whole is intended to help the understanding of the discrete nature of photocounts when a photocathode is excited by a continuous high-energy laser radiation train.

Fulltext is available at IOP
PACS: 79.60.Bm, 42.50.Ct, 07.60.Dq, 85.60.Gz (all)
DOI: 10.1070/PU1995v038n08ABEH000101
Citation: Bykov V P, Gerasimov A V, Turin V O "Coulomb disintegration of weak electron fluxes and the photocounts" Phys. Usp. 38 911–921 (1995)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Быков В П, Герасимов А В, Турин В О «Кулоновская дезынтеграция слабых электронных потоков и фотоотсчеты» УФН 165 955–966 (1995); DOI: 10.3367/UFNr.0165.199508d.0955

References (23) Cited by (18) Similar articles (20) ↓

  1. V.P. Bykov “Squeezed light and nonclassical motion in mechanics36 (9) 841–850 (1993)
  2. V.P. Bykov “Basic properties of squeezed light34 (10) 910–924 (1991)
  3. L.A. Apresyan, Yu.A. Kravtsov “Photometry and coherence: wave aspects of the theory of radiation transport27 301–313 (1984)
  4. V.P. Bykov, V.I. Tatarskii “Perturbation theory for resolvents as applied to problems in radiation theory34 (2) 167–184 (1991)
  5. A.B. Brailovskii, V.L. Vaks, V.V. Mityugov “Quantum models of relaxation39 745–750 (1996)
  6. E.L. Nolle “Tunneling photoeffect mechanism in metallic nanoparticles activated by cesium and oxygen50 1079–1082 (2007)
  7. S.A. Afanas’ev, D.I. Sementsov “Energy fluxes during the interference of electromagnetic waves51 355–361 (2008)
  8. D.N. Klyshko “The Einstein-Podolsky-Rosen paradox for energy-time variables32 555–563 (1989)
  9. B.M. Bolotovskii, V.P. Bykov “Radiation by charges moving faster than light33 (6) 477–487 (1990)
  10. B.Sh. Perkal’skis “A Lummer–Gehrcke plate for instructional purposes7 330–330 (1964)
  11. V.P. Bykov “Form of the Hamiltonian and the initial conditions in radiation problems27 631–640 (1984)
  12. A.M. Zheltikov “The critique of quantum mind: measurement, consciousness, delayed choice, and lost coherence61 1016–1025 (2018)
  13. S.M. Stishov “Quantum effects in a system of Boltzmann hard spheres62 617–622 (2019)
  14. D.A. Kirzhnits, S.N. Yudin “Paradoxes of superfluid rotation38 1283–1288 (1995)
  15. N.P. Klepikov “Radiation damping forces and radiation from charged particles28 506–520 (1985)
  16. M.V. Kuzelev, A.A. Rukhadze “Nonrelativistic quantum theory of stimulated Cherenkov radiation and Compton scattering in a plasma54 375–380 (2011)
  17. A.V. Shchagin “Fresnel coefficients for parametric X-ray (Cherenkov) radiation58 819–827 (2015)
  18. V.N. Tsytovich “Collective effects of plasma particles in bremsstrahlung38 87–108 (1995)
  19. A.M. Ignatov, A.I. Korotchenko et alOn the interpretation of computer simulation of classical Coulomb plasma38 109–114 (1995)
  20. B.P. Kosyakov “Radiation in electrodynamics and in Yang-Mills theory35 (2) 135–142 (1992)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions