Issues

 / 

1992

 / 

February

  

Methodological notes


Radiation in electrodynamics and in Yang-Mills theory

The classical concept of radiation in gauge theories is analyzed. It is concluded from a discussion of three definitions of electromagnetic radiation, i.e., traditional, Dirac's and Teitelboim's definitions, that only the last of these three represents correctly the structure of electromagnetic self-action. Teitelboim's definition is also satisfactory in the non-Abelian case in which the radiation problem is intertwined with that of confinement. The exact solution of the Yang--Mills equations with current formed by an arbitrarily moving color charge is used as a basis for a description of the non-Abelian classical picture. In the confinement phase, the energy of the gauge field is absorbed by the color charge, whereas the deconfinement phase involves the usual emission of radiation, and the color charge (free or accelerated by non-Yang--Mills forces) produces only colorless converging or diverging waves. Certain other fundamental questions concerning classical self-action in Abelian and non-Abelian gauge theories are also examined.

Fulltext pdf (468 KB)
Fulltext is also available at DOI: 10.1070/PU1992v035n02ABEH002218
PACS: 11.15.−q, 12.20.Ds, 12.38.Aw (all)
DOI: 10.1070/PU1992v035n02ABEH002218
URL: https://ufn.ru/en/articles/1992/2/e/
Citation: Kosyakov B P "Radiation in electrodynamics and in Yang-Mills theory" Sov. Phys. Usp. 35 (2) 135–142 (1992)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Косяков Б П «Излучение в электродинамике и теории Янга-Миллса» УФН 162 (2) 161–176 (1992); DOI: 10.3367/UFNr.0162.199202e.0161

References (21) Cited by (23) ↓ Similar articles (20)

  1. Prykarpatski A K J. Phys.: Conf. Ser. 2482 012017 (2023)
  2. Khlopunov M J. Cosmol. Astropart. Phys. 2023 019 (2023)
  3. Khlopunov M, Gal’tsov D V J. Cosmol. Astropart. Phys. 2022 014 (2022)
  4. Khlopunov M, Gal’tsov D V J. Cosmol. Astropart. Phys. 2022 062 (2022)
  5. Gal’tsov D  V, Khlopunov M Phys. Rev. D 101 (8) (2020)
  6. Kosyakov B P Physics Reports 812 1 (2019)
  7. Lomidze I, Chachava N 2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), (2018) p. 89
  8. Chubykalo A E, Espinoza A, Kosyakov B P Annals Of Physics 384 85 (2017)
  9. Prykarpatsky A K Ukr. J. Phys. 62 172 (2017)
  10. Prykarpatski A K, Bogolubov N N Phys. Part. Nuclei Lett. 14 87 (2017)
  11. Prykarpatsky A K, Bogolubov N N Ukr. J. Phys. 61 187 (2016)
  12. Bogolubov N, Prykarpatski A, Blackmore D Mathematics 3 190 (2015)
  13. Kazinski P O, Shipulya M A Phys. Rev. E 83 (6) (2011)
  14. KOSYAKOV B P Int. J. Mod. Phys. A 23 4695 (2008)
  15. Kosyakov B P J. Phys. A: Math. Theor. 41 465401 (2008)
  16. Bordovitsyn V A, Pozdeeva T O Russ Phys J 49 648 (2006)
  17. KOSYAKOV B P Int. J. Mod. Phys. A 20 2459 (2005)
  18. Bordovitsyn V A, Bulenok V G, Pozdeeva T O Nuclear Instruments And Methods In Physics Research Section B: Beam Interactions With Materials And Atoms 201 9 (2003)
  19. Kosyakov B P, Kosyakov B P Teor. Mat. Fiz. 119 119 (1999) [Kosyakov B P Theor Math Phys 119 493 (1999)]
  20. Kosyakov B P Phys. Rev. D 57 5032 (1998)
  21. Kosyakov B P Theor Math Phys 99 409 (1994)
  22. Chechin L M Theor Math Phys 99 422 (1994)
  23. Kosyakov B P Physics Letters B 312 471 (1993)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions