Issues

 / 

1991

 / 

August

  

Physics of our days


A tangle of fractal fibers as a new state of matter


Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation

A system of fractal fibers (a fractal tangle) is formed as a result of evaporation of a weakly ionized atomic vapor from a surface in an external electric field. A fractal tangle has the density of a gas but the behavior of a liquid or solid. The tangle-globule phase transition in this system is similar to the transition in a long polymer fiber with self-intersections. The explosive nature of a fractal tangle is due to its high surface energy, since the system consists of nanometer particles and a significant fraction of the molecules are on the surfaces of the particles. An explosion of a fractal tangle is accompanied by a large number of thermal waves propagating along individual fractal fibers. The result is a large number of hot spots moving inside the system. There is a connection between fractal tangles and ball lightning.

Fulltext pdf (377 KB)
Fulltext is also available at DOI: 10.1070/PU1991v034n08ABEH002465
PACS: 64.60.Ak, 64.70.Kb (all)
DOI: 10.1070/PU1991v034n08ABEH002465
URL: https://ufn.ru/en/articles/1991/8/e/
Citation: Smirnov B M "A tangle of fractal fibers as a new state of matter" Sov. Phys. Usp. 34 (8) 711–716 (1991)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Смирнов Б М «Фрактальный клубок — новое состояние вещества» УФН 161 (8) 141–153 (1991); DOI: 10.3367/UFNr.0161.199108e.0141

References (47) Cited by (23) ↓ Similar articles (11)

  1. Buryanskaya E L, Gradov O V et al Advanced Structured Materials Vol. Mechanics of Heterogeneous MaterialsTime-Resolved Multifractal Analysis of Electron Beam Induced Piezoelectric Polymer Fiber Dynamics: Towards Multiscale Thread-Based Microfluidics or Acoustofludics195 Chapter 3 (2023) p. 35
  2. Marov M Ya, Ipatov S I Uspekhi Fizicheskikh Nauk 193 (01) 2 (2023) [Marov M Ya, Ipatov S I Phys. Usp. 66 (01) 2 (2023)]
  3. Kalashnikov E V High Temp 60 (1) 8 (2022)
  4. Lazorenko O V, Chernogor L F Radio Phys. Radio Astron. 25 (1) 3 (2020)
  5. Rao A V J Sol-Gel Sci Technol 90 (1) 28 (2019)
  6. Pakhomov A N, Gatapova N T S J Eng Phys Thermophy 92 (2) 424 (2019)
  7. Smirnov B M Uspekhi Fizicheskikh Nauk 187 (12) 1329 (2017) [Smirnov B M Phys.-Usp. 60 (12) 1236 (2017)]
  8. Smirnov B M J. Exp. Theor. Phys. 123 (5) 769 (2016)
  9. Smirnov B M J. Exp. Theor. Phys. 121 (4) 587 (2015)
  10. Miskinova N A, Shvilkin B N Uspekhi Fizicheskikh Nauk 185 (12) 1333 (2015) [Miskinova N A, Shvilkin B N Phys.-Usp. 58 (12) 1215 (2015)]
  11. Klyucharev V V, Klyuchareva S V J Therm Anal Calorim 119 (3) 1633 (2015)
  12. Akimova I V, Akunets A A et al J Radioanal Nucl Chem 299 (2) 955 (2014)
  13. Levitskii V S, Maksimov A I et al Phys. Solid State 56 (7) 1408 (2014)
  14. Antipov A A, Arakelyan S M et al Bull. Russ. Acad. Sci. Phys. 76 (6) 611 (2012)
  15. Smirnov B M Uspekhi Fizicheskikh Nauk 181 (7) 713 (2011)
  16. Cluster Processes in Gases and Plasmas 1 (2010) p. 423
  17. Zhabrev V A, Margolin V I Inorg Mater 44 (13) 1459 (2008)
  18. Klyucharev V V Glass Phys Chem 34 (6) 660 (2008)
  19. Krainov V P, Smirnov M B Journal Of Modern Optics 50 (3-4) 695 (2003)
  20. Smirnov B M Physics Reports 224 (4) 151 (1993)
  21. Smirnov B M Phys.-Usp. 36 (7) 592 (1993)
  22. Smirnov B M Int J Theor Phys 32 (8) 1453 (1993)
  23. Smirnov B M Uspekhi Fizicheskikh Nauk 162 (08) 43 (1992)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions