Issues

 / 

1988

 / 

June

  

Reviews of topical problems


Resonance radiation plasma (photoresonance plasma)

,  a,  b
a National Research Centre ‘Kurchatov Institute’, pl. akad. Kurchatova 1, Moscow, 123182, Russian Federation
b Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation

A plasma formed by the action on a gas of monochromatic radiation whose frequency corresponds to the energy of a resonance transition in the atom is studied. The elementary methods of creating and studying a plasma of this type are analyzed. The kinetics of formation of a photoresonance plasma is studied, including collision processes with participation of excited atoms leading to formation of molecular ions and highly excited atoms, processes of stepwise ionization and triple recombination, and radiative processes. A photoresonance plasma is characterized by a high electron density with a relatively low electron temperature; for this reason the condition of ideality is more easily violated in a plasma of this type. Some ways of utilizing a photoresonance plasma are presented.

PACS: 52.25.Os, 52.20.Fs, 52.38.−r (all)
DOI: 10.1070/PU1988v031n06ABEH003563
URL: https://ufn.ru/en/articles/1988/6/c/
Citation: Beterov I M, Eletskii A V, Smirnov B M "Resonance radiation plasma (photoresonance plasma)" Sov. Phys. Usp. 31 535–554 (1988)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Бетеров И М, Елецкий А В, Смирнов Б М «Плазма резонансного излучения (фоторезонансная плазма)» УФН 155 265–298 (1988); DOI: 10.3367/UFNr.0155.198806c.0265

References (103) Cited by (21) ↓ Similar articles (20)

  1. Astashkevich S A, Kudryavtsev A A Journal Of Quantitative Spectroscopy And Radiative Transfer 313 108826 (2024)
  2. Mandour M M, Astashkevich S A, Kudryavtsev A A IEEE Trans. Plasma Sci. 49 990 (2021)
  3. Mandour M M, Astashkevich S A, Kudryavtsev A A IEEE Trans. Plasma Sci. 48 402 (2020)
  4. Mandour M M, Astashkevich S A, Kudryavtsev A A IEEE Trans. Plasma Sci. 48 394 (2020)
  5. Mandour M M, Astashkevich S A, Kudryavtsev A A Plasma Sources Sci. Technol. 29 115005 (2020)
  6. Astashkevich S A, Kudryavtsev A A 26 (10) (2019)
  7. Krainov V, Smirnov B M Springer Series On Atomic, Optical, And Plasma Physics Vol. Atomic and Molecular Radiative ProcessesResonant Radiation in Atomic Gases108 Chapter 3 (2019) p. 77
  8. Belokurov A A, Askinazi L G et al Nucl. Fusion 58 112007 (2018)
  9. Astashkevich S A, Bogdanov E A et al J. Phys.: Conf. Ser. 927 012004 (2017)
  10. Kusoglu S C, Rafatov I, Kudryavtsev A A 24 (8) (2017)
  11. Atutov S N, Plekhanov A I et al Eur. Phys. J. D 66 (5) (2012)
  12. Lankin A V J. Exp. Theor. Phys. 107 870 (2008)
  13. Gorbunov N A, Flamant G High Temp 44 950 (2006)
  14. Gorbunov N A, Flamant G Tech. Phys. 49 1491 (2004)
  15. Leonov A G, Pal’ A F et al J. Exp. Theor. Phys. 99 61 (2004)
  16. Gorbunov N A, Stacewicz T Tech. Phys. Lett. 26 654 (2000)
  17. Ignjatović L J M, Mihajlov A A Contrib. Plasma Phys. 37 309 (1997)
  18. Leonov A G, Chekhov D I, Starostin A N J. Exp. Theor. Phys. 84 703 (1997)
  19. McDaniel E W, Mansky E J Advances In Atomic, Molecular, And Optical Physics Vol. Cross Section DataGuide to Bibliographies, Books, Reviews and Compendia of Data on Atomic Collisions33 (1994) p. 389
  20. Gorshkov O A, Rizakhanov R N 63 2466 (1992)
  21. Beterov I M, Borodin V M, Klyucharev A N J Eng Phys Thermophys 62 467 (1992)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions