Issues

 / 

1988

 / 

January

  

Methodological notes


A simple method of preparing pure states of an optical field, of implementing the Einstein-Podolsky-Rosen experiment, and of demonstrating the complementarity principle


Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

A description is given of a device that periodically transforms a field from the vacuum state to a pure excited state that corresponds to the propagation of two correlated photons. It employs the phenomenon of parametric scattering, i.e., the emission of pairs of photons by a nonlinear crystal excited by a pulsed coherent pump under phase-matched conditions. In accordance with the well-known Einstein--Podolsky--Rosen gedanken experiment, the device can be used to observe the correlation of either the transverse momenta of the photons (when the two detectors are located in the far-field zone) or their transverse coordinates (when the detectors are in the near-field zone). The device may be of interest in photometry, and also from the methodological point of view as a clear demonstration of the EPR paradox and the complementarity of the transverse coordinate and momentum of a photon.

Fulltext pdf (434 KB)
Fulltext is also available at DOI: 10.1070/PU1988v031n01ABEH002537
PACS: 42.50.Dv, 42.79.Pw (all)
DOI: 10.1070/PU1988v031n01ABEH002537
URL: https://ufn.ru/en/articles/1988/1/f/
Citation: Klyshko D N "A simple method of preparing pure states of an optical field, of implementing the Einstein-Podolsky-Rosen experiment, and of demonstrating the complementarity principle" Sov. Phys. Usp. 31 74–85 (1988)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Клышко Д Н «Простой метод приготовления чистых состояний оптического поля, реализации эксперимента Эйнштейна, Подольского, Розена и демонстрации принципа дополнительности» УФН 154 133–152 (1988); DOI: 10.3367/UFNr.0154.198801e.0133

References (52) Cited by (129) ↓ Similar articles (20)

  1. Shekel R, Lib O, Bromberg Ya Optica Quantum 2 303 (2024)
  2. Alodjants A P, Tsarev D V et al Uspekhi Fizicheskikh Nauk 194 711 (2024)
  3. [Alodjants A P, Tsarev D V et al Phys. Usp. 67 668 (2024)]
  4. Ye Zh, Hou W et al Laser & Photonics Reviews (2024)
  5. Paniate A, Massaro G et al Phys. Rev. Applied 21 (2) (2024)
  6. Moodley Ch, Forbes A Laser & Photonics Reviews 18 (8) (2024)
  7. Sun M-J Coded Optical Imaging Chapter 8 (2024) p. 131
  8. Zheng Y, Xu J-Sh et al Phys. Rev. A 110 (6) (2024)
  9. Karmakar S, Goodrich Ju et al CLEO 2024, (2024) p. JTu2A.183
  10. Trenkwalder L M, López-Incera A et al Mach. Learn.: Sci. Technol. 4 035043 (2023)
  11. Chang Ch, Sun Sh et al Acta Phys. Sin. 72 183301 (2023)
  12. Wittkop M, Marmolejo-Tejada Ju M, Mosquera M A Organic Electronics 120 106858 (2023)
  13. Gili V F, Dupish D et al Appl. Opt. 62 3093 (2023)
  14. Nape I, Sephton B et al 8 (5) (2023)
  15. Machavariani A Quantum Entanglement in High Energy Physics Chapter 13 (2023)
  16. Schaffer K, Lemos G B Trends and Challenges in Cognitive Modeling STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health Chapter 9 (2023) p. 113
  17. Sun Zh, Tian T et al Chin. Opt. Lett. 21 081101 (2023)
  18. Fedorov A K, Kiktenko E O et al Uspekhi Fizicheskikh Nauk 193 1162 (2023)
  19. [Fedorov A K, Kiktenko E O et al Phys. Usp. 66 1095 (2023)]
  20. Moodley Ch, Forbes A J. Opt. Soc. Am. B 40 3073 (2023)
  21. Gieysztor M, Nepinak J et al Opt. Express 31 20629 (2023)
  22. Cao D-Zh, Zhang X-Zh et al Phys. Rev. A 107 (2) (2023)
  23. Lib O, Bromberg Ya 7 (3) (2022)
  24. He Yu, Zhou Yu et al J. Opt. Soc. Am. B 39 3100 (2022)
  25. Xiong J, Zheng P et al Phys. Rev. Applied 18 (3) (2022)
  26. Gili V F, Piccinini C et al 121 (10) (2022)
  27. Balakin D A, Belinsky A V Quantum Inf Process 21 (7) (2022)
  28. Dogra Sh, McCord J J, Paraoanu G S Nat Commun 13 (1) (2022)
  29. Friederich P, Krenn M et al Mach. Learn.: Sci. Technol. 2 025027 (2021)
  30. Lib O, Bromberg Ya Conference on Lasers and Electro-Optics, (2021) p. JTh3A.20
  31. Liu D, Tian M et al Phys. Rev. Applied 16 (6) (2021)
  32. Liu Sh, Zhang Y et al Phys. Rev. A 101 (5) (2020)
  33. Belinsky A V Uspekhi Fizicheskikh Nauk 190 1335 (2020) [Belinsky A V Phys.-Usp. 63 1256 (2020)]
  34. Cerf N J, Jabbour M G Proc. Natl. Acad. Sci. U.S.A. 117 33107 (2020)
  35. Valencia N H, Goel S et al Nat. Phys. 16 1112 (2020)
  36. Sun J, Peng M et al Complexity 2020 1 (2020)
  37. Ribeiro P H S, Häffner T et al Phys. Rev. A 101 (5) (2020)
  38. Otte E, Nape I et al J. Opt. Soc. Am. B 37 A309 (2020)
  39. Korotkova O, Gbur G Progress In Optics Vol. A Tribute to Emil WolfApplications of optical coherence theory65 (2020) p. 43
  40. Roux F S Phys. Rev. Research 2 (3) (2020)
  41. Yu W-K, Leng J Physics Letters A 384 126778 (2020)
  42. Moreau P-A, Toninelli E et al Nat Rev Phys 1 367 (2019)
  43. Ibarra-Borja Z, Sevilla-Gutiérrez C et al Opt. Express 27 25228 (2019)
  44. Konrad T, Forbes A Contemporary Physics 60 1 (2019)
  45. Aidukas T, Konda P Ch et al Sci Rep 9 (1) (2019)
  46. Moreau P-A, Toninelli E et al Sci. Adv. 5 (7) (2019)
  47. Toninelli E, Ndagano B et al Adv. Opt. Photon. 11 67 (2019)
  48. Li Zh, Medvedev N et al J. Phys. B: At. Mol. Opt. Phys. 51 025503 (2018)
  49. Hoenders B J Advances In Imaging And Electron Physics Vol. 208 (2018) p. 1
  50. Moreau P-A, Toninelli E et al Opt. Express 26 7528 (2018)
  51. Melnikov A A, Poulsen N H et al Proc. Natl. Acad. Sci. U.S.A. 115 1221 (2018)
  52. Gantsevich S V, Gurevich V L Phys. Solid State 60 1 (2018)
  53. Moreau Paul‐Antoine, Toninelli E et al Laser & Photonics Reviews 12 (1) (2018)
  54. Arruda M F Z, Soares W C et al Phys. Rev. A 98 (2) (2018)
  55. McLaren M, Forbes A J. Opt. 19 044006 (2017)
  56. Speirits F C, Sonnleitner M, Barnett S M J. Opt. 19 044001 (2017)
  57. Ryczkowski P, Barbier M et al APL Photonics 2 046102 (2017)
  58. Sych D, Averchenko V, Leuchs G Phys. Rev. A 96 (5) (2017)
  59. Li Heng-xing, Bai Yan-feng et al Chinese Phys. B 26 104204 (2017)
  60. Ryczkowski P, Barbier M et al Nature Photon 10 167 (2016)
  61. Krenn M, Malik M et al Optics in Our Time Chapter 18 (2016) p. 455
  62. Siddiqui M A, Qureshi T Quantum Stud.: Math. Found. 3 115 (2016)
  63. Aspden R S, Morris P A et al J. Opt. 18 055204 (2016)
  64. Zhong MaLin, Xu P et al Sci. China Phys. Mech. Astron. 59 (7) (2016)
  65. Ghalaii M, Afsary M et al Phys. Rev. A 94 (4) (2016)
  66. Siddiqui M A Int. J. Quantum Inform. 13 1550022 (2015)
  67. (Quantum Information and Computation XIII) Vol. Quantum Information and Computation XIIIConsiderations on collapse of the wavefunctionEricDonkorAndrew R.PirichMichaelHaydukJ.ReintjesMarkBashkansky9500 (2015) p. 95000U
  68. Dongze L, Xiang L et al IEEE Trans. Geosci. Remote Sensing 52 2261 (2014)
  69. Zhang Y, Mclaren M et al Opt. Express 22 17039 (2014)
  70. (Complex Light and Optical Forces VIII) Vol. Complex Light and Optical Forces VIIIEncoding mutually unbiased bases in orbital angular momentum for quantum key distributionDavid L.AndrewsEnrique J.GalvezJesperGlückstadA.DudleyM.MafuS.GoyalD.GiovanniniM.McLarenT.KonradM. J.PadgettF.PetruccioneN.LütkenhausA.Forbes8999 (2014) p. 89991I
  71. Belinsky A V, Shulman M Kh Uspekhi Fizicheskikh Nauk 184 1135 (2014) [Belinsky A V, Shulman M Kh Phys.-Usp. 57 1022 (2014)]
  72. McLaren M, Mhlanga T et al Nat Commun 5 (1) (2014)
  73. Aspden R S, Tasca D S et al Journal Of Modern Optics 61 547 (2014)
  74. Barnett S M Quantum Information and Coherence Chapter 1 (2014) p. 1
  75. D’Angelo M, Garuccio A et al Springer Proceedings In Physics Vol. Frontiers of Fundamental Physics and Physics Education ResearchToward “Ghost Imaging” with Cosmic Ray Muons145 Chapter 24 (2014) p. 237
  76. McLaren M, Romero Ja et al Phys. Rev. A 88 (3) (2013)
  77. Xu D-Q, Song X-B et al Optics Communications 309 298 (2013)
  78. Belinskii A V, Chirkin A S Uspekhi Fizicheskikh Nauk 183 1231 (2013) [Belinsky A V, Chirkin A S Phys.-Usp. 56 1126 (2013)]
  79. Mafu M, Dudley A et al Phys. Rev. A 88 (3) (2013)
  80. Romero J, Giovannini D et al Phys. Rev. A 86 (1) (2012)
  81. Shih Ya Classical, Semi-classical and Quantum Noise Chapter 14 (2012) p. 169
  82. Shih Ya Quantum Inf Process 11 995 (2012)
  83. Liu Y-Ch, Kuang L-M Phys. Rev. A 83 (5) (2011)
  84. Walborn S P, Souto R P H, Monken C H Opt. Express 19 17308 (2011)
  85. Chan K W C, Simon D S et al Phys. Rev. A 84 (4) (2011)
  86. Karmakar S, Shih Ya Phys. Rev. A 81 (3) (2010)
  87. Karmakar S, Shih Ya Frontiers in Optics 2010/Laser Science XXVI, (2010) p. PDPC8
  88. Luo K-H, Chen X-H et al Phys. Rev. A 82 (3) (2010)
  89. Qian L, Kai-Hong L et al Chinese Phys. B 19 094211 (2010)
  90. Luo K-H, Wen J et al Phys. Rev. A 80 (4) (2009)
  91. Shih Ya The Western Ontario Series In Philosophy Of Science Vol. Quantum Reality, Relativistic Causality, and Closing the Epistemic CircleThe Physics of 2 ≠ 1+173 Chapter 11 (2009) p. 157
  92. Lvovsky A I, Raymer M G Rev. Mod. Phys. 81 299 (2009)
  93. Meyers R, Deacon K S, Shih Ya Phys. Rev. A 77 (4) (2008)
  94. Shih Ya Frontiers in Optics 2007/Laser Science XXIII/Organic Materials and Devices for Displays and Energy Conversion, (2007) p. FTuI3
  95. Kolchin P Phys. Rev. A 75 (3) (2007)
  96. Shih Ya 2007 Conference on Lasers and Electro-Optics - Pacific Rim, (2007) p. 1
  97. Shih Ya IEEE J. Select. Topics Quantum Electron. 13 1016 (2007)
  98. Shih Ya Front. Phys. China 2 125 (2007)
  99. Basano L, Ottonello P 75 343 (2007)
  100. Wen J, Rubin M H, Shih Ya Phys. Rev. A 76 (4) (2007)
  101. Meyers R, Deacon K, Shih Ya Journal Of Modern Optics 54 2381 (2007)
  102. Shih Ya International Conference on Quantum Information, (2007) p. IFH1
  103. Wen J, Xu P et al Phys. Rev. A 76 (2) (2007)
  104. Wen J, Du Sh, Rubin M H Phys. Rev. A 76 (1) (2007)
  105. Belinskii A V, Isaeva A V et al Uspekhi Fizicheskikh Nauk 176 543 (2006)
  106. Basano L, Ottonello P 89 (9) (2006)
  107. Erkmen B I, Shapiro Je H Phys. Rev. A 74 (4) (2006)
  108. D’Angelo M, Shih Y H Laser Phys. Lett. 2 567 (2005)
  109. Abouraddy A F, Stone P R et al Phys. Rev. Lett. 93 (21) (2004)
  110. Abouraddy A F, Toussaint, Jr Kimani C et al J. Opt. Soc. Am. B 19 656 (2002)
  111. Abouraddy A F, Nasr M B et al Phys. Rev. A 65 (5) (2002)
  112. Crispino M, Di Giuseppe G et al Fortschr. Phys. 48 589 (2000)
  113. Burlakov A V, Kulik S P et al J. Exp. Theor. Phys. 86 1090 (1998)
  114. Strekalov D V, Shih Y H Phys. Rev. A 56 3129 (1997)
  115. Burlakov A V, Chekhova M V et al Phys. Rev. A 56 3214 (1997)
  116. Rubin M H Phys. Rev. A 54 5349 (1996)
  117. KLYSHKO D N Annals Of The New York Academy Of Sciences 755 13 (1995)
  118. Pittman T B, Shih Y H et al Phys. Rev. A 52 R3429 (1995)
  119. SHIH Y H, SERGIENKO A V et al Annals Of The New York Academy Of Sciences 755 121 (1995)
  120. Delone N B, Krainov V P Multiphoton Processes in Atoms Chapter 11 (1994) p. 291
  121. Klyshko D N Physics Letters A 163 349 (1992)
  122. Demutskii V P, Polovin R V Uspekhi Fizicheskikh Nauk 162 93 (1992)
  123. Karasev V P J Russ Laser Res 12 431 (1991)
  124. Klyshko D N Physics Letters A 154 433 (1991)
  125. Karasev V P J Russ Laser Res 12 147 (1991)
  126. Klyshko D N Physics Letters A 146 93 (1990)
  127. Klyshko D N Physics Letters A 137 334 (1989)
  128. Klyshko D N Physics Letters A 132 299 (1988)
  129. Klyshko D N Physics Letters A 128 133 (1988)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions